精英家教网 > 高中数学 > 题目详情

【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:

分组

频数

频率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合计

M

1

(1)求出表中Mp及图中a的值;

(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.

【答案】(1)0.125;(2)5;(3)

【解析】

(1)由频率=,能求出表中M、p及图中a的值.(2)由频数与频率的统计表和频率分布直方图能求出参加社区服务的平均次数.(3)在样本中,处于[20,25)内的人数为3,可分别记为A,B,C,处于[25,30]内的人数为2,可分别记为a,b,由此利用列举法能求出至少1人参加社区服务次数在区间[20,25)内的概率.

(1)由分组[10,15)内的频数是10,频率是0.25知,,所以M=40.

因为频数之和为40,所以

因为a是对应分组[15,20)的频率与组距的商,所以

(2)因为该校高三学生有360人,分组[15,20)内的频率是0.625,

所以估计该校高三学生参加社区服务的次数在此区间内的人数为360×0.625=225人.

(3)这个样本参加社区服务的次数不少于20次的学生共有3+2=5

设在区间[20,25)内的人为{a1,a2,a3},在区间[25,30)内的人为{b1,b2}.

则任选2人共有(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)10种情况,(9分)

而两人都在[20,25)内共有(a1,a2),(a1,a3),(a2,a3)3种情况,

至多一人参加社区服务次数在区间[20,25)内的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列是首项为2,公比为的等比数列,且前项和为.

(1)用表示

(2)是否存在自然数,使得成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)过点P(2,1),且离心率为
(Ⅰ)求椭圆的方程;
(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足 ,直线PM、PN分别交椭圆于A,B.
(i)求证:直线AB过定点,并求出定点的坐标;
(ii)求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的方程为,圆与直线相交于两点,且为坐标原点),则实数的值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆外一点,若圆上存在一点,使得,则正数的取值范围是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过原点O(0,0)且与直线y=2x﹣8相切于点P(4,0).

(1)求圆C的方程;

(2)已知直线l经过点(4, 5),且与圆C相交于MN两点,若|MN|=2,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的内角ABC的对边分别为abc,2acosC=bcosC+ccosB

(1)求角C的大小;

(2)若c=a2+b2=10,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某项科研活动共进行了5次试验,其数据如表所示:

特征量

第1次

第2次

第3次

第4次

第5次

x

555

559

551

563

552

y

601

605

597

599

598

(Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;
(Ⅱ)求特征量y关于x的线性回归方程 ;并预测当特征量x为570时特征量y的值.
(附:回归直线的斜率和截距的最小二乘法估计公式分别为 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C的离心率为,且过点过椭圆的左顶点A作直线M为直线上的动点B为椭圆右顶点,直线BM交椭圆CP

(1)求椭圆C的方程;

(2)求证:

(3)试问是否为定值若是定值,请求出该定值;若不是定值,请说明理由.

查看答案和解析>>

同步练习册答案