精英家教网 > 高中数学 > 题目详情
15.某校共有在职教师200人,其中高级教师20人,中级教师100人,初级教师80人,现采用分层抽样抽取容量为50的样本进行职称改革调研,则抽取的初级教师的人数为(  )
A.25B.20C.12D.5

分析 根据分层抽样的定义即可得到结论.

解答 解:∵初级教师80人,
∴抽取一个容量为50的样本,用分层抽样法抽取的初级教师人数为$\frac{80}{200}=\frac{n}{50}$,
解得n=20,即初级教师人数应为20人,
故选:B.

点评 本题主要考查分层抽样的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,EF⊥PB交PB于点F.
(Ⅰ)求点C到平面BDE的距离;
(Ⅱ)证明:PB⊥平面DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如上图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动,则直线D1E与A1D所成角的大小是90°,若D1E⊥EC,则直线A1D与平面D1DE所成的角为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过点P(2,1)的直线l与函数f(x)=$\frac{2x+3}{2x-4}$的图象交于A,B两点,O为坐标原点,则$\overrightarrow{OA}•\overrightarrow{OP}+\overrightarrow{OB}•\overrightarrow{OP}$=(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的右焦点F($\sqrt{6},0$),过点F作平行于y轴的直线截椭圆C所得的弦长为$\sqrt{2}$.
(1)求椭圆的标准方程;
(2)过点(1,0)的直线l交椭圆C于P,Q两点,N点在直线x=-1上,若△NPQ是等边三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过点P(2,1)的直线l与函数f(x)=$\frac{2x+3}{2x-4}$的图象交于A,B两点,O为坐标原点,则($\overrightarrow{OA}+\overrightarrow{OB}$)$•\overrightarrow{OP}$=(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$过点A(0,$\sqrt{2}$),离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的标准方程;
(2)过点(1,0)的直线l交椭圆C于P,Q两点,N是直线x=1上的一点,若△NPQ是等边三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.计算下列各式的值.
(1)${(\frac{25}{9})^{\frac{1}{2}}}-{(2\sqrt{3}-π)^0}-{(\frac{64}{27})^{-\frac{1}{3}}}+{(\frac{1}{4})^{-\frac{3}{2}}}$;
(2)$lg5+{(lg2)^2}+lg5•lg2+ln\sqrt{e}+lg\sqrt{10}•lg1000$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知Sn是数列{an}的前n项和,且${a_1}=1,{a_{n+1}}+{a_n}={2^{n+1}}(n∈{N^*})$
(Ⅰ)求证:$\left\{{{a_n}-\frac{{{2^{n+1}}}}{3}}\right\}$是等比数列,并求{an}的通项公式;
(Ⅱ)设bn=3nan,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案