精英家教网 > 高中数学 > 题目详情

已知函数y=3sin(x).

(1)用“五点法”作函数的图象;

(2)说出此图象是由y=sinx的图象经过怎样的变化得到的;

(3)求此函数的周期、振幅、初相;

(4)求此函数的对称轴、对称中心、单调递增区间.

(1)同解析;(2)同解析;(3)周期T==4π,振幅A=3,初相是-;(4)所有图象与x轴的交点都是函数的对称中心,所以对称中心为点(+2kπ,0),k∈Z;[-+4kπ,+4kπ],k∈Z为此函数的单调递增区间;


解析:

(1)

(2) “先平移,后伸缩”.

先把y=sinx的图象上所有的点向右平移个单位,得到y=sin(x)的图象;再把y=sin(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin(x)的图象;最后将y=sin(x)的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y=3sin(x)的图象.

(3)周期T==4π,振幅A=3,初相是-.

(4)由于y=3sin(x)是周期函数,通过观察图象可知,所有与x轴垂直并且通过图象的最值点的直线都是此函数的对称轴,即令x=+kπ,解得直线方程为x=+2kπ,k∈Z;

所有图象与x轴的交点都是函数的对称中心,所以对称中心为点(+2kπ,0),k∈Z;

x前的系数为正数,所以把x视为一个整体,令-+2kπ≤x+2kπ,解得[-+4kπ,+4kπ],k∈Z为此函数的单调递增区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=3sin(2x-
π6
).求①函数的周期T;②函数的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=3sin(
1
2
x-
π
4
)

(1)列表、描点,用五点法作出函数的图象;
(2)说明此图象是由y=sinx的图象经过怎么样的变化得到的;
(3)求此函数的振幅、周期和初相;
列表:描点连线:
x
(
1
2
x-
π
4
)
3sin (
1
2
x-
π
4
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=3sin(2x+
π4
)

(1)求该函数的周期,单调区间;
(2)求该函数的值域、对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=3sinωx(ω>0)的周期是π,将函数y=3cos(ωx-
π
2
)(ω>0)
的图象沿x轴向右平移
π
8
个单位,得到函数y=f(x)的图象,则函数y=f(x)的单调增区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=3sin(2x+
π4
)

(1)求该函数最小正周期和单调递增区间;
(2)求该函数的最小值,并给出此时x的取值集合.

查看答案和解析>>

同步练习册答案