【题目】已知为实数,数列满足,.
(Ⅰ)当和时,分别写出数列的前5项;
(Ⅱ)证明:当时,存在正整数,使得;
(Ⅲ)当时,是否存在实数及正整数,使得数列的前项和?若存在,求出实数及正整数的值;若不存在,请说明理由.
【答案】(Ⅰ)见解析(Ⅱ)见证明;(Ⅲ)见解析
【解析】
(I)利用递推公式,依次计算出的值.(II)当时,,此时数列为递减的等差数列,且公差为,故总有一项是不大于的.根据这一项在之间讨论,结合数列的递推公式,判断出正整数存在.(III)将分成三类,求得的表达式,由此判断出不存在实数正整数,使得.
(Ⅰ)当时,;
当时,.
(Ⅱ)当时,. 所以,在数列中直到第一个小于等于的项出现之前,数列是以为首项,为公差的递减的等差数列.
即.
所以,当足够大时,总可以找到,使.
(1)若,令,则存在正整数,使得.
(2)若,因为,则,
令,则存在正整数,使得.
综述所述,则存在正整数,使得.
(Ⅲ)①当时,
当时,,
当时,(),
令,,而此时为奇数,所以不成立;又不成立,所以不存在正整数,使得.
②当时,……
所以数列的周期是4,
当,时,;
当,时,;
当,时,;
当,时,.
所以().
所以或者是偶数,或者不是整数,即不存在正整数,使得.
③当时,
(),不存在正整数,使得.
综述所述,不存在实数正整数,使得.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线,(为参数),以坐标原点为极点,轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的普通方程;
(2)若分别为曲线上的动点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查,某超市的一种商品在过去的一个月内(以30天计算),销售价格与时间(天)的函数关系近似满足,销售量与时间(天)的函数关系近似满足.
(1)试写出该商品日销售金额关于时间的函数表达式;
(2)求该商品的日销售金额的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列,若存在常数M,使得对任意,与中至少有一个不小于M,则记作,那么下列命题正确的是( ).
A.若,则数列各项均大于或等于M;
B.若,则;
C.若,,则;
D.若,则;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com