(04年湖南卷理)(12分)
如图,在底面是菱形的四棱锥中,
,点E在PD上,且PE:ED=2:1。
(Ⅰ)证明;
(Ⅱ)求以AC为棱,EAC与DAC为面的二面角的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF//平面AEC?证明你的结论。
解析:(Ⅰ)证明 因为底面ABCD是菱形,∠ABC=60°,
所以AB=AD=AC=a, 在△PAB中,
由PA2+AB2=2a2=PB2 知PA⊥AB.
同理,PA⊥AD,所以PA⊥平面ABCD.
(Ⅱ)作EG//PA交AD于G,由PA⊥平面ABCD.
知EG⊥平面ABCD.作GH⊥AC于H,连结EH,
则EH⊥AC,∠EHG即为二面角的平面角.
又PE : ED=2 : 1,所以
从而
(Ⅲ)解法一 以A为坐标原点,直线AD、AP分别为y轴、z轴,过A点垂直平面PAD的直线为x轴,建立空间直角坐标系如图.
由题设条件,相关各点的坐标分别为
所以
设点F是棱PC上的点,则
令 得
解得 即 时,
亦即,F是PC的中点时,、、共面.
又 BF平面AEC,所以当F是棱PC的中点时,BF//平面AEC.
解法二 当F是棱PC的中点时,BF//平面AEC,证明如下,
证法一 取PE的中点M,连结FM,则FM//CE. ①
由 知E是MD的中点.
连结BM、BD,设BDAC=O,则O为BD的中点.
所以 BM//OE. ②
由①、②知,平面BFM//平面AEC.
又 BF平面BFM,所以BF//平面AEC.
证法二
因为
所以 、、共面.
又 BF平面ABC,从而BF//平面AEC.
科目:高中数学 来源: 题型:
(04年湖南卷理)(14分)
如图,直线与相交于点P。直线与x轴交于点,过点作x轴的垂线交直线于点,过点作轴的垂线直线于点,过点作x轴的垂线交直线于点,…,这样一直作下去,可得到一系列点,,,,…。点的横坐标构成数列。
(Ⅰ)证明;
(Ⅱ)求数列的通项公式;
(Ⅲ)比较与的大小。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com