精英家教网 > 高中数学 > 题目详情
已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{an2}各项的和为
81
5

(1)求数列{an}的首项a1和公比q;
(2)对给定的k(k=1,2,3,…,n),设T(k)是首项为ak,公差为2ak-1的等差数列,求T(2)的前2007项之和;
(3)(理)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn
①求Sn的表达式,并求出Sn取最大值时n的值.
②求正整数m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.
(文)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn:求Sn的表达式,并求正整数m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.
分析:(1)依题意,利用等比数列前n项和公式可以出一个方程组,解这个方程组,得到数列{an}的首项a1和公比q.
(2)由an=3×(
2
3
)n-1
,知数列T(2)的首项为t1=a2=2,公差d=2a2-1=3,由此能求出T(2)的前2007项之和.
(3)(理)bi=ai+(i-1)(2ai-1)=(2i-1)ai-(i-1)=3(2i-1)(
2
3
)i-1-(i-1)
;①Sn=45-(18n+27)(
2
3
)n-
n(n-1)
2
;由此计算得b1=3,b2=5,b3=
14
3
b4=
29
9
b5=
4
3
b6=-
53
81
<0
,所以Sn当n=5时取最大值.②
lim
n→∞
Sn
nm
=
lim
n→∞
45
nm
-
18n+27
nm
(
2
3
)n-
n(n-1)
2nm
,由此分类讨论进行求解.
(文)bi=ai+(i-1)(2ai-1)=(2i-1)ai-(i-1)=3(2i-1)(
2
3
)i-1-(i-1)
Sn=45-(18n+27)(
2
3
)n-
n(n-1)
2
lim
n→∞
Sn
nm
=
lim
n→∞
45
nm
-
18n+27
nm
(
2
3
)n-
n(n-1)
2nm
,由此分类讨论进行求解.
解答:解:(1)依题意可知,
a1
1-q
=9
a21
1-q2
=
81
5
?
a1=3
q=
2
3

(2)由(1)知,an=3×(
2
3
)n-1
,所以数列T(2)的首项为t1=a2=2,公差d=2a2-1=3,S2007=2007×2+
1
2
×2007×2006×3=6043077
,即数列的前2007项之和为6043077.
(3)(理)bi=ai+(i-1)(2ai-1)=(2i-1)ai-(i-1)=3(2i-1)(
2
3
)i-1-(i-1)

Sn=45-(18n+45)(
2
3
)n-
n(n-1)
2

bnbn-1
bnbn+1
,解得n=2,
计算可得b1=3,b2=5,b3=
14
3
b4=
29
9
b5=
4
3
b6=-
53
81
<0

因为当n≥2时,bn>bn+1,所以Sn当n=5时取最大值.
lim
n→∞
Sn
nm
=
lim
n→∞
45
nm
-
18n+27
nm
(
2
3
)n-
n(n-1)
2nm

当m=2时,
lim
n→∞
Sn
nm
=-
1
2
,当m>2时,
lim
n→∞
Sn
nm
=0,所以m=2.
(文)bi=ai+(i-1)(2ai-1)=(2i-1)ai-(i-1)=3(2i-1)(
2
3
)i-1-(i-1)
Sn=45-(18n+27)(
2
3
)n-
n(n-1)
2
lim
n→∞
Sn
nm
=
lim
n→∞
45
nm
-
18n+27
nm
(
2
3
)n-
n(n-1)
2nm

当m=2时,
lim
n→∞
Sn
nm
=-
1
2
,当m>2时,
lim
n→∞
Sn
nm
=0,所以m=2.
点评:本题考查数列的极限和运算,解题时要认真审题,仔细解答,注意公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{an2}各项的和为
815

(1)求数列{an}的首项a1和公比q;
(2)对给定的k(k=1,2,3,…,n),设数列T(k)是首项为ak,公差为2ak-1的等差数列,求数列T(2)的通项公式及前10项的和.

查看答案和解析>>

科目:高中数学 来源:广东 题型:解答题

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{an2}各项的和为
81
5

(1)求数列{an}的首项a1和公比q;
(2)对给定的k(k=1,2,3,…,n),设T(k)是首项为ak,公差为2ak-1的等差数列,求T(2)的前2007项之和;
(3)(理)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn
①求Sn的表达式,并求出Sn取最大值时n的值.
②求正整数m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.
(文)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn:求Sn的表达式,并求正整数m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.

查看答案和解析>>

科目:高中数学 来源:2006年广东省高考数学试卷(解析版) 题型:解答题

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{an2}各项的和为
(1)求数列{an}的首项a1和公比q;
(2)对给定的k(k=1,2,3,…,n),设T(k)是首项为ak,公差为2ak-1的等差数列,求T(2)的前2007项之和;
(3)(理)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn
①求Sn的表达式,并求出Sn取最大值时n的值.
②求正整数m(m>1),使得存在且不等于零.
(文)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn:求Sn的表达式,并求正整数m(m>1),使得存在且不等于零.

查看答案和解析>>

科目:高中数学 来源:2009-2010年上海市华东师大二附中高三数学综合练习试卷(09)(解析版) 题型:解答题

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{an2}各项的和为
(1)求数列{an}的首项a1和公比q;
(2)对给定的k(k=1,2,3,…,n),设T(k)是首项为ak,公差为2ak-1的等差数列,求T(2)的前2007项之和;
(3)(理)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn
①求Sn的表达式,并求出Sn取最大值时n的值.
②求正整数m(m>1),使得存在且不等于零.
(文)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn:求Sn的表达式,并求正整数m(m>1),使得存在且不等于零.

查看答案和解析>>

同步练习册答案