【题目】已知函数的图象与直线相切,是的导函数,且.
(1)求;
(2)函数的图象与曲线关于轴对称,若直线与函数的图象有两个不同的交点,求证:.
科目:高中数学 来源: 题型:
【题目】函数的图象与函数的图象关于直线对称,则关于函数以下说法正确的是( )
A. 最大值为1,图象关于直线对称B. 在上单调递减,为奇函数
C. 在上单调递增,为偶函数D. 周期为,图象关于点对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】秉承“绿水青山就是金山银山”的发展理念,某市环保部门通过制定评分标准,先对本市的企业进行评估,评出四个等级,并根据等级给予相应的奖惩,如下表所示:
评估得分 | ||||
评定等级 | 不合格 | 合格 | 良好 | 优秀 |
奖励(万元) |
环保部门对企业评估完成后,随机抽取了家企业的评估得分(分)为样本,得到如下频率分布表:
评估得分 | ||||||
频率 |
其中、表示模糊不清的两个数字,但知道样本评估得分的平均数是.
(1)现从样本外的数百个企业评估得分中随机抽取个,若以样本中频率为概率,求该家企业的奖励不少于万元的概率;
(2)现从样本“不合格”、“合格”、“良好”三个等级中,按分层抽样的方法抽取家企业,再从这家企业随机抽取家,求这两家企业所获奖励之和不少于万元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2|x+1|+|x-2|.
(1)求f(x)的最小值m;
(2)若a,b,c均为正实数,且满足a+b+c=m,求证:++≥3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, .
(1)当时,求曲线在点处的切线方程;
(2)当时,求在区间上的最大值和最小值;
(3)当时,若方程在区间上有唯一解,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(0<p<8)的焦点为F点Q是抛物线C上的一点,且点Q的纵坐标为4,点Q到焦点的距离为5.
(1)求抛物线C的方程;
(2)设直线l不经过Q点且与抛物线交于A,B两点,QA,QB的斜率分别为K1,K2,若K1K2=﹣2,求证:直线AB过定点,并求出此定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线的准线方程为.
(1)求p的值;
(2)过抛物线C的焦点的直线l交抛物线C于点A,B,交抛物线C的准线于点P,若A为线段PB的中点,求线段AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抖音是一款音乐创意短视频社交软件,是一个专注年轻人的15秒音乐短视频社区,用户可以通过这款软件选择歌曲,拍摄15秒的音乐短视频,形成自己的作品.2018年6月首批25家央企集体入驻抖音,一调研员在某单位进行刷抖音时间的调查,若该单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人.
(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?
(2)若抽出的7人中有3人是抖音迷,4人为非抖音迷,现从这7人中随机抽取3人做进一步的详细登记.
①用表示抽取的3人中是抖音迷的员工人数,求随机变量的分布列与数学期望;
②设为事件“抽取的3人中,既有是抖音迷的员工,也有非抖音迷的员工’’,求事件发生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com