精英家教网 > 高中数学 > 题目详情
抛物线y2=2px的准线方程为x=-2,该抛物线上的每个点到准线x=-2的距离都与到定点N的距离相等,圆N是以N为圆心,同时与直线l1:y=x和l2:y=-x相切的圆,
(1)求定点N的坐标;
(2)是否存在一条直线l同时满足下列条件:
①l分别与直线l1和l2交于A、B两点,且AB中点为E(4,1);
②l被圆N截得的弦长为2.
(1)(2,0)(2)不存在满足条件的直线l.
(1)因为抛物线y2=2px的准线方程为x=-2.所以p=4,根据抛物线的定义可知点N是抛物线的焦点,所以定点N的坐标为(2,0).
(2)假设存在直线l满足两个条件,显然l斜率存在,设l的方程为y-1=k(x-4),k≠±1.以N为圆心,同时与直线l1:y=x和l2:y=-x相切的圆N的半径为.因为l被圆N截得的弦长为2,所以圆心到直线的距离等于1,即d==1,解得k=0或,当k=0时,显然不合AB中点为E(4,1)的条件,矛盾,当k=时,l的方程为4x-3y-13=0.由,解得点A的坐标为(13,13);由,解得点B的坐标为.显然AB中点不是E(4,1),矛盾,所以不存在满足条件的直线l.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xoy中,以点P为圆心的圆与圆x2+y2-2y=0外切且与x轴相切(两切点不重合).
(1)求动点P的轨迹方程;
(2)若直线mx一y+2m+5=0(m∈R)与点P的轨迹交于A、B两点,问:当m变化时,以线段AB为直径的圆是否会经过定点?若会,求出此定点;若不会,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设圆C位于抛物线y2=2x与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为__________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=2px(p≠0)及定点A(a,b),B(-a,0),ab≠0,b2≠2pa,M是抛物线上的点.设直线AM、BM与抛物线的另一个交点分别为M1、M2,当M变动时,直线M1M2恒过一个定点,此定点坐标为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C.若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知斜率为2的直线l过抛物线y2=ax(a>0)的焦点F,且与y轴相交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,设P是抛物线C1:x2=y上的动点,过点P作圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A、B两点.

(1)求圆C2的圆心M到抛物线C1准线的距离;
(2)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.

(1)求实数b的值.
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的准线方程是
A.B.C.D.

查看答案和解析>>

同步练习册答案