精英家教网 > 高中数学 > 题目详情
1.已知点F是抛物线C:y2=x的焦点,点S是抛物线C上在第一象限内的一点,且|SF|=$\frac{5}{4}$.
(1)求点S的坐标;
(2)以S为圆心的动圆与x轴分别交于两点A,B,延长SA,SB分别交抛物线C于M,N两点,若直线MN与y轴上的截距b∈(-$\frac{1}{2}$,$\frac{3}{2}}$),求△SMN面积的最大值.

分析 (1)设S(x0,y0)(y0>0),由已知得F($\frac{1}{4}$,0),则|SF|=x0+$\frac{1}{4}$=$\frac{5}{4}$,由此能求出点S的坐标.
(2)设直线SA的方程为y-1=k(x-1)(k≠0),M(x1,y1),与抛物线方程联立得ky2-y+1-k=0,求出M,N的坐标导出直线MN的斜率为定值,设出直线MN的方程与抛物线方程联立,求出△SMN面积,换元,利用导数的方法求△SMN面积的最大值.

解答 解:(1)设S(x0,y0)(y0>0),由已知得F($\frac{1}{4}$,0),则|SF|=x0+$\frac{1}{4}$=$\frac{5}{4}$,
∴x0=1,
∴y0=1,∴点S的坐标是(1,1)------------------------(2分)
(2)设直线SA的方程为y-1=k(x-1)(k≠0),M(x1,y1),
与抛物线方程联立得ky2-y+1-k=0,
∴y1=$\frac{1}{k}$-1,∴M($\frac{(1-k)^{2}}{{k}^{2}}$,$\frac{1}{k}$-1).
由已知SA=SB,∴直线SB的斜率为-k,
∴N($\frac{(1+k)^{2}}{{k}^{2}}$,-$\frac{1}{k}$-1),∴kMN=-$\frac{1}{2}$
设直线MN的方程为y=-$\frac{1}{2}$x+b,即x+2y-2b=0,b∈(-$\frac{1}{2}$,$\frac{3}{2}}$),
与抛物线方程联立,消去x,可得y2+2y-2b=0,
∴|MN|=$\sqrt{1+4}$•$\sqrt{4+8b}$=2$\sqrt{5}$•$\sqrt{1+2b}$,
S到直线MN的距离d=$\frac{|3-2b|}{\sqrt{5}}$,
∴S△SMN=$\frac{1}{2}•2\sqrt{5}•\sqrt{1+2b}•\frac{|3-2b|}{\sqrt{5}}$=$\sqrt{1+2b}$(3-2b),
令t=$\sqrt{1+2b}$,t∈(0,2),S△SMN=t(4-t2),
S△SMN′=-3t2+4=0,t=$\frac{2\sqrt{3}}{3}$,
∴t=$\frac{2\sqrt{3}}{3}$,△SMN面积的最大值为$\frac{16\sqrt{3}}{9}$.

点评 本题主要考查直线与圆锥曲线的综合应用能力,涉及到直线与圆锥曲线的相关知识,导数知识的运用,知识综合性强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.12+4$\sqrt{3}$B.12C.$8+2\sqrt{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是函数y=Asin(ωx+φ)(x∈R)在区间[-$\frac{π}{6}$,$\frac{5π}{6}$]上的图象.为了得到这个函数的图象,只需将y=sinx(x∈R)的图象上所有的点(  )
A.向左平移$\frac{π}{3}$个单位,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$倍
B.向左平移$\frac{π}{3}$个单位,再把所得各点的横坐标伸长到原来的2倍
C.向左平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$倍
D.向左平移$\frac{π}{6}$个单位,再把所得各点的横坐标伸长到原来的2倍

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且经过点(2,0)
(Ⅰ)求椭圆C的方程
(Ⅱ)若与坐标轴不垂直的直线l经过椭圆C的左焦点F(-c,0),且与椭圆C交于不同两点A,B,问是否存在常数λ,(λ为实数),使|AB|=λ|AF||BF|恒成立,若存在,请求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在长方体ABCD-A1B1C1D1中,E、F分别是棱BC,CC1上的点,CF=AB=2CE,AB:AD:AA1=1:2:4,二面角A1-ED-F的正弦值$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量$\overrightarrow{a}$1=$[\begin{array}{l}{1}\\{1}\end{array}]$,特征值λ2=-1及其对应的一个特征向量$\overrightarrow{a}$2=$[\begin{array}{l}{1}\\{-1}\end{array}]$,
(1)求矩阵A;  
(2)求矩阵A的逆矩阵A-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点,
(1)求异面直线A1M和C1D1所成的角的正切值;
(2)求二面角C1-B1C-D1的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出以下四个问题,
①输入一个数x,输出它的相反数.
②求面积为6的正方形的周长.
③求三个数a,b,c中的最大数.
④求函数f(x)=$\left\{\begin{array}{l}{x-1,x≥0}\\{x+2,x<0}\end{array}\right.$的函数值.
其中不需要用条件语句来描述其算法的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知圆x2+y2=4与双曲线$\frac{x^2}{4}-\frac{y^2}{b^2}$=1(b>0)的两条渐近线相交于A,B,C,D四点,若四边形ABCD的面积为2b,则b=$2\sqrt{3}$.

查看答案和解析>>

同步练习册答案