精英家教网 > 高中数学 > 题目详情

【题目】如图,在六面体ABCDA1B1C1D1中,AA1//CC1A1B=A1DAB=AD.求证:

1AA1BD

2BB1//DD1.

【答案】1)证明见解析;(2)证明见解析.

【解析】

1)取BD中点E,连接AEA1E,证明BD⊥平面A1AE,即可证得结论;

2)证明BB1//CC1DD1//CC1,再利用平行公理,即可证得结论.

1)取BD中点E,连接AEA1E

∵△ABD中,AB=ADEBD中点

AEBD,同理可得A1EBD

AEA1E平面A1AEAEA1E=E

BD⊥平面A1AE

AA1平面A1AE,∴AA1BD

2)∵AA1//CC1AA1平面AA1B1BCC1平面AA1B1B

CC1//平面AA1B1B

CC1平面CC1B1B,平面CC1B1B平面AA1B1B=BB1

BB1//CC1,同理可得DD1//CC1

BB1//DD1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为。斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为

1)求椭圆的方程;

2)求的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点是曲线上的动点,点的延长线上,且,点的轨迹为

(1)求直线及曲线的极坐标方程;

(2)若射线与直线交于点,与曲线交于点(与原点不重合),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国著名数学家狄利克雷(Dirichlet,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” 其中R为实数集,Q为有理数集.则关于函数有如下四个命题,正确的为( )

A.函数是偶函数

B.,,恒成立

C.任取一个不为零的有理数T,对任意的恒成立

D.不存在三个点,,,使得为等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆C:(),称圆心在原点O,半径为的圆是椭圆C的“卫星圆”.若椭圆C的离心率,点C上.

(1)求椭圆C的方程和其“卫星圆”方程;

(2)点P是椭圆C的“卫星圆”上的一个动点,过点P作直线,使得,与椭圆C都只有一个交点,且,分别交其“卫星圆”于点M,N,证明:弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“回文数”是指从左到右与从右到左读都一样的正整数,如221213553等.显然2位“回文数”共9个:112233,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y

1)求X为“回文数”的概率;

2)设随机变量表示XY两数中“回文数”的个数,求的概率分布和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)设函数,讨论的单调性;

2)设函数,若的图象与的图象有两个不同的交点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角ABC的对边分别为abc

(1)求角A的大小;

(2)若a=3,求△ABC的周长L的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:类(不参加课外阅读),类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时).调查结果如下表:

男生

5

3

女生

3

3

1)求出表中的值;

2)根据表中的统计数据,完成下面的列联表,并判断是否有90%的把握认为参加课外阅读与否与性别有关;

男生

女生

总计

不参加课外阅读

参加课外阅读

总计

PKk0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案