精英家教网 > 高中数学 > 题目详情
17.已知向量$\overrightarrow{a}$=(x,2,2),$\overrightarrow{b}$=(2,y,-2),$\overrightarrow{c}$=(3,1,z),$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$⊥$\overrightarrow{c}$.
(1)求向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$;
(2)求向量($\overrightarrow{a}$+$\overrightarrow{c}$)与($\overrightarrow{b}$+$\overrightarrow{c}$)所成角的余弦值.

分析 (1)根据空间向量平行的坐标表示,列出方程组求出x、y的值,再根据向量垂直的坐标表示,列出方程求出z的值即可;
(2)利用空间向量的数量积求出夹角的余弦值即可.

解答 解:(1)向量$\overrightarrow{a}$=(x,2,2),$\overrightarrow{b}$=(2,y,-2),且$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴x≠0,y≠0,
∴$\frac{x}{2}$=$\frac{2}{y}$=$\frac{2}{-2}$,
解得x=-2,y=-2;
∴$\overrightarrow{a}$=(-2,2,2),$\overrightarrow{b}$=(2,-2,-2),
又∵$\overrightarrow{c}$=(3,1,z),$\overrightarrow{b}$⊥$\overrightarrow{c}$,
∴$\overrightarrow{b}$•$\overrightarrow{c}$=0,
即6-2-2z=0,
解得z=2,
∴$\overrightarrow{c}$={3,1,2};
(2)由(1)得,$\overrightarrow{a}$+$\overrightarrow{c}$=(1,3,4),
$\overrightarrow{b}$+$\overrightarrow{c}$=(5,-1,0),
∴($\overrightarrow{a}$+$\overrightarrow{c}$)•($\overrightarrow{b}$+$\overrightarrow{c}$)=1×5+3×(-1)+4×0=2,
|$\overrightarrow{a}$+$\overrightarrow{c}$|=$\sqrt{{1}^{2}{+3}^{2}{+4}^{2}}$=$\sqrt{26}$,
|$\overrightarrow{b}$+$\overrightarrow{c}$|=$\sqrt{{5}^{2}{+(-1)}^{2}{+0}^{2}}$=$\sqrt{26}$;
设$\overrightarrow{a}$+$\overrightarrow{c}$与$\overrightarrow{b}$+$\overrightarrow{c}$所成角为θ,
∴cosθ=$\frac{(\overrightarrow{a}+\overrightarrow{c})•(\overrightarrow{b}+\overrightarrow{c})}{|\overrightarrow{a}+\overrightarrow{c}|×|\overrightarrow{b}+\overrightarrow{c}|}$=$\frac{2}{\sqrt{26}×\sqrt{26}}$=$\frac{1}{13}$.

点评 本题考查了空间向量的坐标运算与数量积运算的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知下列四个命题:
①函数f(x)=2x满足:对任意x1,x2∈R且x1≠x2都有$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}$;
②函数$f(x)={log_2}(x+\sqrt{1+{x^2}})$,g(x)=1+$\frac{2}{{{2^x}-1}}$不都是奇函数;
③若函数f(x)满足f(x-1)=-f(x+1),且f(1)=2,则f(7)=-2
④设x1,x2是关于x的方程|logax|=k(a>0且a≠1)的两根,则x1x2=1.
其中正确命题的序号是(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为响应国家“精准扶贫,产业扶贫”的战略,进一步优化能源消费结构,某市决定在一地处山区的A县推进光伏发电项目.在该县山区居民中随机抽取50户,统计其年用电量得到以下统计表.以样本的频率作为概率.
用电量(度)(0,200](200,400](400,600](600,800](800,1000]
户数51510155
(I)在该县山区居民中随机抽取10户,记其中年用电量不超过600度的户数为X,求X的数学期望;
(II)已知该县某山区自然村有居民300户.若计划在该村安装总装机容量为300千瓦的光伏发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以0.8元/度进行收购.经测算以每千瓦装机容量年平均发电1000度,试估计该机组每年所发电量除保证正常用电外还能为该村创造直接收益多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$f(x)=\frac{1}{2}({cosx-sinx})({cosx+sinx})+3a({sinx-cosx})+({4a-1})x$在$[{-\frac{π}{2},0}]$上单调递增,则实数a的取值范围为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对任意实数x,若不等式4x-m•2x+2>0恒成立,则实数m的取值范围是(  )
A.-2$\sqrt{2}$<m<2$\sqrt{2}$B.-2<m<2C.m≤2$\sqrt{2}$D.-2≤m≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有800名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:
分组频数频率
50.5~60.560.08
60.5~70.512      0.16
70.5~80.5150.2              
80.5~90.5240.32
90.5~100.5180.24
合计751
(Ⅰ)填充频率分布表的空格(将答案直接填在答题卡的表格内);
(Ⅱ)补全频率分布直方图;
(Ⅲ)若成绩在80.5~90.5分的学生为二等奖,问获得二等奖的学生约为多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.点A(0,2)是圆x2+y2=16内的定点,B,C是这个圆上的两个动点,若BA⊥CA,求BC中点M的轨迹方程,并说明它的轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知正方体ABCD-A1B1C1D1中,点H是棱B1C1中点,则四边形BDD1H是(  )
A.平行四边形B.矩形C.空间四边形D.菱形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=lnx,g(x)=x+$\frac{a}{x}$,a∈R.
(1)设F(x)=f(x)+g(x)-x,若F(x)在[1,e]上的最小值是$\frac{3}{2}$,求实数a的值;
(2)若x≥1时,f(x)≤g(x)恒成立,求实数a的取值范围;
(3)当n≥2时且n∈N*时,求证:$\frac{ln2}{3}$×$\frac{ln3}{4}$×$\frac{ln4}{5}$×…×$\frac{lnn}{n+1}$<$\frac{1}{n}$.

查看答案和解析>>

同步练习册答案