精英家教网 > 高中数学 > 题目详情
(2011•韶关模拟)椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点F与抛物线y2=4x的焦点重合,且截抛物线的准线所得弦长为
2
,倾斜角为45°的直线l过点F.
(Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为F1,问抛物线y2=4x上是否存在一点M,使得M与F1关于直线l对称,若存在,求出点M的坐标,若不存在,说明理由.
分析:(Ⅰ)确定抛物线y2=4x的焦点与准线方程为x=-1,利用椭圆焦点F与抛物线y2=4x的焦点重合,且截抛物线的准线所得弦长为
2
,建立方程,即可求得椭圆的方程;
(Ⅱ)根据倾斜角为45°的直线l过点F,可得直线l的方程,由(Ⅰ)知椭圆的另一个焦点为F1(-1,0),利用M(x0,y0)与F1关于直线l对称,可得M的坐标,由此可得结论.
解答:解:(Ⅰ)抛物线y2=4x的焦点为F(1,0),准线方程为x=-1,(2分)
∴a2-b2=1  ①(3分)
又椭圆截抛物线的准线x=-1所得弦长为
2
,∴得上交点为(-1,
2
2
)

1
a2
+
1
2
b2
=1
  ②(4分)
由①代入②得2b4-b2-1=0,解得b2=1或b2=-
1
2
(舍去),
从而a2=b2+1=2
∴该椭圆的方程为
x2
2
+y2 =1
     (6分)
(Ⅱ)∵倾斜角为45°的直线l过点F,
∴直线l的方程为y=x-1,(7分)
由(Ⅰ)知椭圆的另一个焦点为F1(-1,0),设M(x0,y0)与F1关于直线l对称,(8分)
则得
y0-0
x0+1
×1=-1
y0+0
2
=
x0-1
2
-1
 (10分)  
解得
x0=1
y0=-2
,即M(1,-2)
又M(1,-2)满足y2=4x,故点M在抛物线上.   (11分)
所以抛物线y2=4x上存在一点M(1,-2),使得M与F1关于直线l对称.(12分)
点评:本题考查椭圆的标准方程,考查点关于线的对称问题,解题的关键是利用抛物线及弦长建立方程,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•韶关模拟)函数y=
x-1
的定义域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•韶关模拟)公安部发布酒后驾驶处罚的新规定(一次性扣罚12分)已于2011年4月1日起正式施行.酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q<80时,为酒后驾车;当Q≥80时,为醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量(如下表).
血酒含量 (0,20) [20,40) [40,60) [60,80) [80,100) [100,120]
人数 194 1 2 1 1 1
依据上述材料回答下列问题:
(Ⅰ)分别写出酒后违法驾车发生的频率和酒后违法驾车中醉酒驾车的频率;
(Ⅱ)从酒后违法驾车的司机中,抽取2人,请一一列举出所有的抽取结果,并求取到的2人中含有醉酒驾车的概率. (酒后驾车的人用大写字母如A,B,C,D表示,醉酒驾车的人用小写字母如a,b,c,d表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•韶关模拟)某出版社新出版一本高考复习用书,该书的成本为5元/本,经销过程中每本书需付给代理商m元(1≤m≤3)的劳务费,经出版社研究决定,新书投放市场后定价为x元/本(9≤x≤11),预计一年的销售量为(20-x)2万本.
(1)求该出版社一年的利润L(万元)与每本书的定价x的函数关系式;
(2)当每本书的定价为多少元时,该出版社一年的利润L最大,并求出L的最大值R(m).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•韶关模拟)为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:
据此可估计该校上学期200名教师中,使用多媒体进行教学次数在[15,30]内的人数为
100
100

查看答案和解析>>

同步练习册答案