精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为

(Ⅰ)分别求曲线的极坐标方程和曲线的直角坐标方程;

(Ⅱ)设直线交曲线 两点,交曲线 两点,求的长.

【答案】(Ⅰ) (Ⅱ)

【解析】试题分析:(Ⅰ)先消去参数得到曲线的普通方程,再利用普通方程和极坐标方程的互化公式进行求解;(Ⅱ)先将直线的极坐标方程化为直角坐标方程,再联立求出交点坐标,再利用两点间的距离公式进行求解.

试题解析:(Ⅰ)曲线的普通方程为,即

曲线的极坐标方程为,即

因为曲线的极坐标方程为,即

故曲线的直角坐标方程为,即

(Ⅱ)直线的极坐标方程为,化为直角坐标方程得

. 

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且

(1)求证:不论为何值,总有平面BEF⊥平面ABC;

(2)当λ为何值时,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点.

(1)求证:EF⊥BC;
(2)求二面角E﹣BF﹣C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A,ω>0,﹣π<φ<π)在一个周期内的图象如图所示.

(1)求f(x)的表达式;
(2)在△ABC中,f(C+ )=﹣1且 <0,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosωxsin(ωx+ )(ω>0)的最小正周期为π.
(1)求ω的值;
(2)讨论f(x)在区间[0, ]上的单调性;
(3)当x∈[0, ]时,关于x的方程f(x)=a 恰有两个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知cosx=﹣ ,x∈(0,π)
(1)求cos(x﹣ )的值;
(2)求sin(2x+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinx(sinx+ cosx)﹣1(其中x∈R),求:
(1)函数f(x)的最小正周期;
(2)函数f(x)的单调减区间;
(3)函数f(x)图象的对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.

(Ⅰ)求椭圆C的方程;

(Ⅱ)若过点M(2,0)的直线与椭圆C相交于两点A,B,当时,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 点(n, )在直线y= x+ 上.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和为Tn , 并求使不等式Tn 对一切n∈N*都成立的最大正整数k的值.

查看答案和解析>>

同步练习册答案