【题目】在平面坐标系中xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(为参数).以O为极点,x轴的非负半轴为极轴,建立极坐标系.
(1)求曲线C的普通方程和直线l的极坐标方程;
(2)设P为曲线C上的动点,求点P到直线l的距离的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面ABCD为直角梯形,BC//AD,且AD=2AB=2BC=2,∠BAD=90°,△PAD为等边三角形,平面ABCD⊥平面PAD;点E、M分别为PD、PC的中点.
(1)证明:CE//平面PAB;
(2)求三棱锥M﹣BAD的体积;
(3)求直线DM与平面ABM所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地种植常规稻A和杂交稻B,常规稻A的亩产稳定为500公斤,今年单价为3.50元/公斤,估计明年单价不变的可能性为10%,变为3.60元/公斤的可能性为60%,变为3.70元/公斤的可能性为30%.统计杂交稻B的亩产数据,得到亩产的频率分布直方图如下;统计近10年来杂交稻B的单价(单位:元/公斤)与种植亩数(单位:万亩)的关系,得到的10组数据记为,并得到散点图如下,参考数据见下.
(1)估计明年常规稻A的单价平均值;
(2)在频率分布直方图中,各组的取值按中间值来计算,求杂交稻B的亩产平均值;以频率作为概率,预计将来三年中至少有二年,杂交稻B的亩产超过765公斤的概率;
(3)判断杂交稻B的单价y(单位:元/公斤)与种植亩数x(单位:万亩)是否线性相关?若相关,试根据以下的参考数据求出y关于x的线性回归方程;调查得知明年此地杂交稻B的种植亩数预计为2万亩.若在常规稻A和杂交稻B中选择,明年种植哪种水稻收入更高?
统计参考数据:,,,,
附:线性回归方程,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥A﹣BCD中,△ABD和△ACD是边长为2的等边三角形,,O、E分别是BC、AC的中点.
(1)求证:OE∥平面ABD;
(2)求证:平面ABC⊥平面BCD;
(3)求三棱锥A﹣BCD的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆与双曲线有相同的焦点坐标,且点在椭圆上.
(1)求椭圆的标准方程;
(2)设A、B分别是椭圆的左、右顶点,动点M满足,垂足为B,连接AM交椭圆于点P(异于A),则是否存在定点T,使得以线段MP为直径的圆恒过直线BP与MT的交点Q,若存在,求出点T的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某控制器中有一个易损部件,该部件由两个电子元件按图1方式连接而成.已知这两个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常工作相互独立.(一个月按30天算)
(1)求该部件的使用寿命达到一个月及以上的概率;
(2)为了保证该控制器能稳定工作,将若干个同样的部件按图2连接在一起组成集成块.每一个部件是否能正常工作相互独立.某开发商准备大批量生产该集成块,在投入生产前,进行了市场调查,结果如下表:
集成块类型 | 成本 | 销售金额 | |
Ⅰ | |||
Ⅱ | |||
Ⅲ |
其中是集成块使用寿命达到一个月及以上的概率,为集成块使用的部件个数.报据市场调查,试分析集成块使用的部件个数为多少时,开发商所得利润最大?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个平面,相互垂直,是它们的交线,则下面结论正确的是( )
A.垂直于平面的平面一定平行于平面
B.垂直于直线的平面一定平行于平面
C.垂直于平面的平面一定平行于直线
D.垂直于直线的平面一定与平面,都垂直
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设递增等比数列{an}的前n项和为Sn,且a2=3,S3=13,数列{bn}满足b1=a1,点P(bn,bn+1)在直线x﹣y+2=0上,n∈N*.
(1)求数列{an},{bn}的通项公式;
(2)设cn,求数列{cn}的前n项和Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com