精英家教网 > 高中数学 > 题目详情

【题目】若函数y=fx)对定义域的每一个值x1,在其定义域均存在唯一的x2,满足fx1fx2)=1,则称该函数为“依赖函数”.

1)判断y=2x是否为“依赖函数”;

2)若函数y=a+sinxa1), 为依赖函数,求a的值,并给出证明.

【答案】1不是,y=2x是(2 ,证明见解析

【解析】

1)根据依赖函数的定义进行判断即可,

2)只需要函数y=a+sinx的最大值和最小值满足fx1fx2=1即可,建立方程关系进行求解即可.

1)解:(1)函数,由fx1fx2=1,得

对应的x1x2不唯一,所以不是依赖函数

对于函数y=2x,由fx1fx2=1,得

所以x2=x1,可得定义域内的每一个值x1,都存在唯一的值x2满足条件,故函数y=2x依赖函数

2)当时,函数y=a+sinxa1)为增函数,且函数关于(0a)对称,

若函数y=a+sinxa1),为依赖函数,

则只需要函数的最大值和最小值满足fx1fx2=1即可,

则函数的最大值为a+1,最小值为a1

则由(a+1)(a1=1a21=1

a2=2,因为a1,所以得a=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)已知函数时总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给正有理数,且不同时成立),按以下规则排列:① ,则排在前面;② ,且,则排在的前面,按此规则排列得到数列.

(例如:.

1)依次写出数列的前10项;

2)对数列中小于1的各项,按以下规则排列:①各项不做化简运算;②分母小的项排在前面;③分母相同的两项,分子小的项排在前面,得到数列,求数列的前10项的和,前2019项的和

3)对数列中所有整数项,由小到大取前2019个互不相等的整数项构成集合的子集满足:对任意的,有,求集合中元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:当时,函数在区间上单调递增;

2)若时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与抛物线交于两点,且的面积为16(为坐标原点).

(1)求的方程.

(2)直线经过的焦点不与轴垂直,交于两点,若线段的垂直平分线与轴交于点,试问在轴上是否存在点,使为定值?若存在,求该定值及的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业拥有3条相同的生产线,每条生产线每月至多出现一次故障.各条生产线是否出现故障相互独立,且出现故障的概率为.

1)求该企业每月有且只有1条生产线出现故障的概率;

2)为提高生产效益,该企业决定招聘名维修工人及时对出现故障的生产线进行维修.已知每名维修工人每月只有及时维修1条生产线的能力,且每月固定工资为1万元.此外,统计表明,每月在不出故障的情况下,每条生产线创造12万元的利润;如果出现故障能及时维修,每条生产线创造8万元的利润;如果出现故障不能及时维修,该生产线将不创造利润,以该企业每月实际获利的期望值为决策依据,在之中选其一,应选用哪个?(实际获利=生产线创造利润-维修工人工资)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=A cos(ωxφ)(A>0,ω>0)的部分图象如图所示,下面结论错误的是(  )

A. 函数f(x)的最小正周期为

B. 函数f(x)的图象可由g(x)=Acos ωx的图象向右平移个单位长度得到

C. 函数f(x)的图象关于直线x对称

D. 函数f(x)在区间上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实数,函数,且函数是偶函数,函数在区间上的减函数,且在区间上是增函数.

1)求函数的解析式;

2)求实数的值;

3)设,问是否存在实数,使得在区间上有最小值为?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案