精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系下,方程的图形为如图所示的“幸运四叶草”,又称为玫瑰线.

(1)当玫瑰线的时,求以极点为圆心的单位圆与玫瑰线的交点的极坐标;

(2)求曲线上的点M与玫瑰线上的点N距离的最小值及取得最小值时的点MN的极坐标(不必写详细解题过程).

【答案】(1);(2)最小值为M,N的极坐标分别为

【解析】

(1)把联立,解方程组即得以极点为圆心的单位圆与玫瑰线的交点的极坐标;(2)曲线的直角坐标方程为再利用数形结合求出点MN的极坐标.

(1)以极点为圆心的单位圆为联立,得

所以,因为,所以

从而得到以极点为圆心的单位圆与玫瑰线的交点的极坐标为

(2)曲线的直角坐标方程为

玫瑰线极径的最大值为2,且在点取得,

连接O垂直且交于点

所以点M与点N的距离的最小值为

此时对应的点MN的极坐标分别为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为常数).

1)讨论函数的单调性;

2)若为整数,函数恰好有两个零点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程是为参数),曲线的参数方程是为参数).

(Ⅰ)将曲线的参数方程化为普通方程;

(Ⅱ)求曲线上的点到曲线的距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB为函数图象上相异两点,且AB的横坐标之积为常数,若AB两点处的切线存在交点,则称这个交点为函数

1)求函数的纵坐标的取值范围;

2)判断函数在哪个象限,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线.

(1)若直线经过抛物线的焦点,求抛物线的准线方程;

(2)若斜率为-1的直线经过抛物线的焦点,且与抛物线交于两点,当时,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A,1.5小时以上,B,1-1.5小时,C,0.5-1小时,D,0.5小时以下.图(1),(2)是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:

(1)本次一共调查了多少名学生.

(2)在图(1)中将对应的部分补充完整.

(3)若该校有3000名学生,你估计全校有多少名学生平均每天参加体育活动的时间在0.5小时以下?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,过且斜率为的直线交于两点,

(1)求的方程;

(2)求过点且与的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校进行社会实践,对岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在岁, 岁年龄段人数中,“时尚族”人数分别占本组人数的.

(1)求岁与岁年龄段“时尚族”的人数;

(2)从岁和岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在岁内的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某山区小学有名四年级学生,将全体四年级学生随机按编号,并且按编号顺序平均分成组.现要从中抽取名学生,各组内抽取的编号按依次增加进行系统抽样.

1)若抽出的一个号码为,据此写出所有被抽出学生的号码;

2)分别统计这名学生的数学成绩,获得成绩数据的茎叶图如图所示,求该样本的方差.

(注:,方差

查看答案和解析>>

同步练习册答案