精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为

判断直线l与圆C的交点个数;

若圆C与直线l交于AB两点,求线段AB的长度.

【答案】(Ⅰ)2;(Ⅱ)2.

【解析】

直线l的参数方程消去参数t,能求出直线l的普通方程,圆C的极坐标方程为,由,能求出圆C的直角坐标方程,由此得到圆心在直线l上,从而能求出直线l与圆C的交点个数.

AB为圆C的直径,能求出的值.

直线l的参数方程为(t为参数

消去参数t得直线l的普通方程为

C的极坐标方程为,即

,得圆C的直角坐标方程为

圆心在直线l上,

直线l与圆C的交点个数为2.

知圆心在直线l上,

为圆C的直径,

C的直角坐标方程为

C的半径C的直径为2,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%50%,可能的最大亏损分别为30%10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=3sin(4x+ )图象上所有点的横坐标伸长到原来的2倍,再向右平移 个单位长度,得到函数y=g(x)的图象,则y=g(x)图象的一条对称轴是(
A.x=
B.x=
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxcos(x+ )+
(1)求函数f(x)的单调递减区间;
(2)求函数f(x)在区间[0, ]上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若,且关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn , 且a1=1,S7=28,记bn=[lgan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1,则数列{bn}的前1000项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 f(x)= sin2x﹣2sin2x,
(1)求f(x)的最小正周期和单调递减区间;
(2)若x∈[﹣ ],求f(x)的最大值及取得最大值时对应的x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)= sin2x﹣ cos2x+1的图象向左平移 个单位,再向下平移1个单位,得到函数y=g(x)的图象,则下列关予函数y=g(x)的说法错误的是(
A.函数y=g(x)的最小正周期为π
B.函数y=g(x)的图象的一条对称轴为直线x=
C. g(x)dx=
D.函数y=g(x)在区间[ ]上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某闯关游戏规则是:先后掷两枚骰子,将此试验重复n轮,第n轮的点数分别记为xn , yn , 如果点数满足xn ,则认为第n轮闯关成功,否则进行下一轮投掷,直到闯关成功,游戏结束.
(Ⅰ)求第一轮闯关成功的概率;
(Ⅱ)如果第i轮闯关成功所获的奖金数f(i)=10000× (单位:元),求某人闯关获得奖金不超过1250元的概率;
(Ⅲ)如果游戏只进行到第四轮,第四轮后不论游戏成功与否,都终止游戏,记进行的轮数为随机变量X,求x的分布列和数学期望.

查看答案和解析>>

同步练习册答案