精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在正方体ABCDABCD′中:

(1)求二面角D′-ABD的大小;

(2)若MCD′的中点,求二面角MABD的大小.

【答案】(1);(2)

【解析】试题分析:(1)根据二面角定义,可得∠DAD为二面角D′-ABD的平面角,再根据正方体的性质即可求解;

(2)取AB的中点N,连接MN,则MNAB.取CD的中点H,连接HN,则HNAB,从而∠MNH是二面角MABD的平面角,再根据正方体的性质即可求解.

试题解析:

(1)在正方体ABCDABCD′中,AB⊥平面ADDA′,所以ABAD′,ABAD,因此∠DAD为二面角D′-ABD的平面角,在Rt△DDA中,∠DAD=45°,所以二面角D′-ABD的大小为45°.

(2)因为MCD′的中点,所以MAMB,取AB的中点N,连接MN,则MNAB.取CD的中点H,连接HN,则HNAB.

从而∠MNH是二面角MABD的平面角.∠MNH=45°,所以二面角MABD的大小为45°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a>0且a≠1)的图象上关于y轴对称的点至少有3对,则实数a的范围是(
A.(0,
B.( ,1)
C.( ,1)
D.(0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的右焦点为F(1,0),点P是椭圆C上一动点,若动点P到点的距离的最大值为b2
(1)求椭圆C的方程,并写出其参数方程;
(2)求动点P到直线l:x+2y﹣9=0的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱锥P﹣ABC中,PA⊥平面ABC,△ABC为正三角形,PA=AB,E是PC的中点,则异面直线AE和PB所成角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,P是四边形ABCD所在平面外的一点,四边形ABCDDAB60°且边长为a的菱形侧面PAD为正三角形,其所在平面垂直于底面ABCD

1GAD边的中点,求证:BG平面PAD

2求证:ADPB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数y=sinx+ cosx的图象向右平移φ(φ>0)个单位长度得到函数y=sinx﹣ cosx的图象,则φ的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在边长为2a的正方形ABCDEF分别为ABBC的中点沿图中虚线将3个三角形折起使点ABC重合重合后记为点P.

(1)折起后形成的几何体是什么几何体

(2)这个几何体共有几个面每个面的三角形有何特点

(3)每个面的三角形面积为多少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题P:函数f(x)=log2m(x+1)是增函数;命题Q:x∈R,x2+mx+1≥0.
(1)写出命题Q的否命题¬Q;并求出实数m的取值范围,使得命题¬Q为真命题;
(2)如果“P∨Q”为真命题,“P∧Q”为假命题,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线a,b和平面M,N,且a⊥M,则下列说法正确的是 (  )

A. b∥Mb⊥a B. b⊥ab∥M

C. N⊥Ma∥N D. aNM∩N≠

查看答案和解析>>

同步练习册答案