精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga
x+1
x-1
(a>0,a≠1)
(1)求f(x)的定义域;
(2)讨论f(x)的奇偶性.
考点:对数函数的定义域,对数的运算性质
专题:函数的性质及应用
分析:(1)根据对数的真数要大于0,构造不等式,解不等式可得函数的定义域;
(2)用奇偶性定义,分析f(-x)与f(x)的关系,进而可得f(x)的奇偶性.
解答: 解:(1)使f(x)有意义,则
x+1
x-1
>0,
解得:x>1或x<-1,
∴f(x)的定义域为{x|x>1,或x<-1}.
(2)由(1)知f(x)的定义域关于原点对称,
∵f(-x)=loga
-x+1
-x-1
=loga
x-1
x+1
=loga
x+1
x-1
)-1
=-loga
x+1
x-1
=-f(x).
∴f(x)为奇函数.
点评:本题主要考查函数的基本性质--奇偶性和定义域,是函数中的常考题型,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={y|y=
x-1
,x∈R},集合B={y|1≤y<4},则A∩(∁RB)(  )
A、(0,1)∪[4,+∞)
B、[4,+∞)
C、(4,+∞)
D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2
+lnx.
(Ⅰ)求函数f(x)在[1,e]上的最大值、最小值;
(Ⅱ)当x∈[1,+∞),比较f(x)与g(x)=
2
3
x3
的大小.
(Ⅲ)求证:[f′(x)]n-f′(xn)≥2n-2(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-1,g(x)=a|x-1|,F(x)=f(x)-g(x)
(1)若a=2,x∈[0,3],求F(x)值域;
(2)若a>2,解关于x的不等式F(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,不正确的是(  )
A、“|x|=|y|”是“x=y”的必要不充分条件
B、命题p:?x∈R,sinx≤1,则¬p:?x∈R,sinx>1
C、“λ≤2”是“数列an=n2-λn+1(n∈N*)为递增数列”的充要条件
D、命题p:所有有理数都是实数,q:正数的对数都是负数,则(¬p)∨(¬q)为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1的参数方程为
x=a+t
y=-
3
t
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2.
(1)求曲线C1、C2的普通方程;
(2)若曲线C1、C2有公共点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥平面ABC.
(1)求证:OD∥平面PAB;
(2)当k=
1
2
时,求直线PA与平面PBC所成角的正弦值;
(3)当k为何值时,O在平面PBC内的射影恰好为△PBC的重心.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x+y-7≤0
x-3y+1≤0
3x-y-5≥0
,则z=2x-y的最大值为(  )
A、10B、8C、3D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠BAC=60°,AB=2,AC=1,E,F为边BC的三等分点,则
AE
AF
=
 

查看答案和解析>>

同步练习册答案