精英家教网 > 高中数学 > 题目详情

如图,椭圆数学公式的左焦点为F,过点F的直线交椭圆于A,B两点.当直线AB经过椭圆的一个顶点时,其倾斜角恰为60°.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)设线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.记△GFD的面积为S1,△OED(O为原点)的面积为S2,求数学公式的取值范围.

解:(Ⅰ)依题意,当直线AB经过椭圆的顶点(0,b)时,其倾斜角为60°.
设 F(-c,0),则
代入a2=b2+c2,得a=2c.
所以椭圆的离心率为
(Ⅱ)由(Ⅰ),椭圆的方程可设为,设A(x1,y1),B(x2,y2).
依题意,直线AB不能与x,y轴垂直,故设直线AB的方程为y=k(x+c),将其代入3x2+4y2=12c2
整理得 (4k2+3)x2+8ck2x+4k2c2-12c2=0.
,所以
因为 GD⊥AB,所以
因为△GFD∽△OED,
所以 =
所以的取值范围是(9,+∞).
分析:(Ⅰ)由题意知当直线AB经过椭圆的顶点(0,b)时,其倾斜角为60°,设 F(-c,0),由直线斜率可求得b,c关系式,再与a2=b2+c2联立可得a,c关系,由此即可求得离心率;
(Ⅱ)由(Ⅰ)椭圆方程可化为,设A(x1,y1),B(x2,y2).由题意直线AB不能与x,y轴垂直,故设直线AB的方程为y=k(x+c),将其代入椭圆方程消掉y变为关于x的二次方程,由韦达定理及中点坐标公式可用k,c表示出中点G的坐标,由GD⊥AB得kGD•k=-1,则D点横坐标也可表示出来,易知△GFD∽△OED,故=,用两点间距离公式即可表示出来,根据式子结构特点可求得的范围;
点评:本题考查直线与圆锥曲线的位置关系、椭圆的简单性质,考查学生分析解决问题的能力,运算量大,综合性强,对能力要求较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分16分)

如图,椭圆的左焦点为,上顶点为,过点作直线的垂线分别交椭圆、轴于两点.⑴若,求实数的值;

⑵设点的外接圆上的任意一点,

的面积最大时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省“十二校”高三第2次联考文科数学试卷(解析版) 题型:解答题

如图,椭圆的左焦点为,右焦点为,过的直线交椭圆于两点, 的周长为8,且面积最大时,为正三角形

1)求椭圆的方程

2)设动直线与椭圆有且只有一个公共点,且与直线于点,证明:点在以为直径的圆上.

 

查看答案和解析>>

科目:高中数学 来源:2014届四川成都六校协作体高二下学期期中考试理科数学试卷(解析版) 题型:解答题

如图,椭圆的左焦点为,过点的直线交椭圆于两点.当直线经过椭圆的一个顶点时,其倾斜角恰为

(Ⅰ)求该椭圆的离心率;

(Ⅱ)设线段的中点为的中垂线与轴和轴分别交于两点,

记△的面积为,△为原点)的面积为,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省苏州市高三(上)期末数学试卷(解析版) 题型:解答题

如图,椭圆的左焦点为F,上顶点为A,过点A作直线AF的垂线分别交椭圆、x轴于B,C两点.
(1)若,求实数λ的值;
(2)设点P为△ACF的外接圆上的任意一点,当△PAB的面积最大时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源:2013年上海市崇明县高考数学一模试卷(文科)(解析版) 题型:解答题

如图,椭圆的左焦点为F1,右焦点为F2,过F1的直线交椭圆于A,B两点,△ABF2的周长为8,且△AF1F2面积最大时,△AF1F2为正三角形.
(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:①以PQ为直径的圆与x轴的位置关系?
②在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案