精英家教网 > 高中数学 > 题目详情

【题目】已知mn是不重合的直线,αβ是不重合的平面,有下列命题:mαn∥α,则m∥nm∥αm∥β,则α∥βα∩β=nm∥n,则m∥αm∥βm⊥αm⊥β,则α∥β.其中真命题的个数是(

A. 0B. 1C. 2D. 3

【答案】B

【解析】

根据平面与平面平行的判定与直线与平面平行的判定进行判定,需要寻找特例,进行排除即可.

①若mα,n∥α,则m与n平行或异面,故不正确;
②若m∥α,m∥β,则α与β可能相交或平行,故不正确;
③若α∩β=n,m∥n,则m∥α且m∥β,m也可能在平面内,故不正确;
④若m⊥α,m⊥β,则α∥β,垂直与同一直线的两平面平行,故正确,
故选B.

本题主要考查了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考查,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,圆轴的一个交点为,圆的圆心为为等边三角形.

求抛物线的方程;

设圆与抛物线交于两点,点为抛物线上介于两点之间的一点,设抛物线在点处的切线与圆交于两点,在圆上是否存在点,使得直线均为抛物线的切线,若存在求出点坐标(用表示);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修4-4:坐标系与参数方程

在直角坐标系xOy中,曲线的参数方程为为参数),M上的动点,P点满足,点P的轨迹为曲线

I)求的方程;

II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为A,与的异于极点的交点为B,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】郑州一中社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图:将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为.若每次抽取的结果是相互独立的,求的分布列,期望

附:,

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年中央电视台春节联欢晚会分会场之一落户黔东南州黎平县肇兴侗寨,黔东南州某中学高二社会实践小组就社区群众春晚节目的关注度进行了调查,随机抽取80名群众进行调查,将他们的年龄分成6段: ,,, ,得到如图所示的频率分布直方图.问:

(Ⅰ)求这80名群众年龄的中位数;

(Ⅱ)若用分层抽样的方法从年龄在中的群众随机抽取6名,并从这6名群众中选派3人外出宣传黔东南,求选派的3名群众年龄在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的高斯函数为:设,用表示不超过x的最大整数,则称为高斯函数,例如:.已知函数,则关于函数的叙述中正确的是(

A.是偶函数B.是奇函数

C.R上是增函数D.的值域是

E.的值域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体 中, 分别为 的中点,点 是底面内一点,且 平面 ,则 的最大值是( )

A. B. 2 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由

参照附表,得到的正确结论是

  

A. 99.5%以上的把握认为“爱好该项运动与性别有关”

B. 99.5%以上的把握认为“爱好该项运动与性别无关”

C. 在犯错误的概率不超过01%的前提下,认为“爱好该项运动与性别有关”

D. 在犯错误的概率不超过01%的前提下,认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直角坐标平面内的两点PQ满足条件:①PQ都在函数的图像上;②PQ关于原点对称,则称PQ是函数的一对友好点对(点对PQQP看作同一对友好点对.已知函数若此函数的友好点对有且只有一对,则a的取值范围是(

A.B.

C.D.

查看答案和解析>>

同步练习册答案