精英家教网 > 高中数学 > 题目详情
9.如图在三棱锥S-ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC,SA=SC=$\sqrt{2}$,M为AB的中点.
(I)证明:AC⊥SB;
(Ⅱ)求点B到平面SCM的距离.

分析 (Ⅰ)欲证AC⊥SB,取AC中点D,连接DS、DB,根据线面垂直的性质定理可知,只须证AC⊥SD且AC⊥DB,即得;
(Ⅱ)设点B到平面SCM的距离为h,利用等体积法:VB-SCM=VS-CMB,即可求得点B到平面SCM的距离.

解答 (Ⅰ)证明:如图,取AC的中点D,连接DS,DB.
∵SA=SC,BA=BC,
∴AC⊥DS,且AC⊥DB,DS∩DB=D,
∴AC⊥平面SDB,又SB?平面SDB,
∴AC⊥SB.   
(Ⅱ)解:∵SD⊥AC,平面SAS⊥平面ABC,
∴SD⊥平面ABC.
如图,过D作DE⊥CM于E,连接SE,则SE⊥CM,
∴在Rt△SDE中,SD=1,DE=$\frac{1}{2}$,
∴SE=$\frac{\sqrt{5}}{2}$.CM是边长为2的正△ABC的中线,∴CM=$\sqrt{3}$.
∴${S}_{△SCM}=\frac{1}{2}CM•SE=\frac{1}{2}×\sqrt{3}×\frac{\sqrt{5}}{2}$=$\frac{\sqrt{15}}{4}$.
${S}_{△BMC}=\frac{1}{2}×\frac{1}{2}AB•CM=\frac{1}{4}×2×\sqrt{3}$=$\frac{\sqrt{3}}{2}$.
设点B到平面SCM的距离为h,
则由VB-SCM=VS-BCM得$\frac{1}{3}{S}_{△SCM}•h=\frac{1}{3}{S}_{△BMC}•SD$,
∴$h=\frac{{S}_{△BMC}•SD}{{S}_{△SCM}}=\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{15}}{4}}=\frac{2\sqrt{5}}{5}$.

点评 本题主要考查直线与直线,直线与平面,点到平面的距离等基础知识,考查空间想象能力和逻辑推理能力,本题考查线面垂直,考查三棱锥体积的计算,解题的关键是掌握线面垂直的判定与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.己知直线l:Ax+By+C=0(A,B不全为0),点P(x0,y0)在l上,则l的方程可化为(  )
A.A(x+x0)+B(y+y0)+C=0B.A(x+x0)+B(y+y0)=0C.A(x-x0)+B(y-y0)+C=0D.A(x-x0)+B(y-y0)=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}中,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,且a1=2,求a2008

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求满足下列条件的直线方程:
(1)经过点(-2,3),且与直线2x-3y-7=0平行;
(2)经过点(3,1),且与直线x-2y-2=0垂直;
(3)经过点(0,-2)及直线2x-y-2=0与x-3y-7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:
甲说:“我们四人都没考好.”
乙说:“我们四人中有人考的好.”
丙说:“乙和丁至少有一人没考好.”
丁说:“我没考好.”
结果,四名学生中有两人说对了,则这四名学生中乙丙两人说对了.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=xlnx的单调减区间是(0,$\frac{1}{e}$),函数y=8x2-lnx的单调增区间是($\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图:一个圆锥的底面半径为1,高为3,在其中有一个半径为x的内接圆柱.
(1)试用x表示圆柱的高;
(2)当x为何值时,圆柱的侧面积最大,最大侧面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设全集U=R,函数f(x)=$\sqrt{x-a}$+lg(a+3-x)的定义域为集合A,集合$B=\left\{{x|\frac{1}{4}≤{2^x}≤32}\right\}$.
(1)若a=-3,求A∩B;
(2)若A⊆∁UB,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知锐角△ABC中,角A、B、C对应的边分别为a、b、c,tanA=$\frac{\sqrt{3}bc}{b^2+c^2-a^2}$.
(1)求A的大小;
(2)设函数f(x)=sin(ωx-$\frac{π}{6}$)-cosωx,(ω>0),且f(x)图象上相领两最高点间的距离为π,求f(B)的取值范围.

查看答案和解析>>

同步练习册答案