精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥的底面ABCD是菱形,平面ABCDFG分别为PDBC中点,.

(Ⅰ)求证:平面PAB

(Ⅱ)求三棱锥的体积;

(Ⅲ)求证:OPAB不垂直.

【答案】(Ⅰ)见解析(Ⅱ)(Ⅲ)见解析

【解析】

(Ⅰ)连接,由已知结合三角形中位线定理可得平面,再由面面平行的判断可得平面平面,进而可得平面

(Ⅱ)首先证明平面,而的中点,然后利用等积法求三棱锥的体积;

(Ⅲ)直接利用反证法证明不垂直.

(Ⅰ)如图,连接

中点,中点,

,而平面平面

平面

又∵中点,中点,

,而平面平面

平面,又

∴平面平面,即平面.

(Ⅱ)∵底面

,又四边形为菱形,

,又

平面,而的中点,

.

(Ⅲ)假设,又,且

平面,则,与矛盾,

∴假设错误,故不垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100个家庭的月均用水量(单位:t),将数据按照分成5组,制成了如图所示的频率分布直方图.

1)记事件A:“全市家庭月均用水量不低于6t”,求的估计值;

2)假设同组中的每个数据都用该组区间的中点值代替,求全市家庭月均用水量平均数的估计值(精确到0.01);

3)求全市家庭月均用水量的25%分位数的估计值(精确到0.01.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数在点处的切线方程;

(2)若存在,对任意,使得恒成立,求实数的取值范围;

(3)已知函数区间上的最小值为1,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知空间四边形ABCD,∠BAC=,AB=AC=2,BD=CD=6,且平面ABC⊥平面BCD,则空间四边形ABCD的外接球的表面积为( )

A. 60π B. 36π C. 24π D. 12π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有1400名考生参加市模拟考试,现采取分层抽样的方法从

文、理考生中分别抽取20份和50份数学试卷,进行成绩分析,

得到下面的成绩频数分布表:

分数分组

[0,30)

[30,60)

[60,90)

[90,120)

[120,150]

文科频数

2

4

8

3

3

理科频数

3

7

12

20

8

(1)估计文科数学平均分及理科考生的及格人数(90分为及格分数线);

(2)在试卷分析中,发现概念性失分非常严重,统计结果如下:

文理

失分

概念

15

30

其它

5

20

问是否有90%的把握认为概念失分与文、理考生的不同有关?(本题可以参考独立性检验临界值表:)

<>0.5

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量单位:千克是每平方米种植株数x的函数.当x不超过4时,v的值为2;当时,vx的一次函数,其中当x10时,v的值为4;当x20时,v的值为0

时,求函数v关于x的函数表达式;

当每平方米种植株数x为何值时,每平方米药材的年生长总量单位:千克取得最大值?并求出这个最大值.年生长总量年平均生长量种植株数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】销售某种活虾,根据以往的销售情况,按日需量x(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500] 进行分组,得到如图所示的频率分布直方图.这种活虾经销商进价成本为每公斤15当天进货当天以每公斤20元进行销售当天未售出的须全部以每公斤10元卖给冷冻库.某水产品经销商某天购进了300公斤这种活虾,设当天利润为Y元.

(1)Y关于x的函数关系式

(2)结合直方图估计利润Y不小于300元的概率

(3)在直方图的日需量分组中,以各组的区间中点值代表该组的各个值,日需量落入该区间的频率作为日需量取该区间中点值的概率,求Y的平均估计值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求的值域;

2)求函数的最小正周期及函数的单调区间;

3)将函数的图像向右平移个单位后,再将得到的图像上各点的横坐标变为原来的倍,纵坐标保持不变,得到函数的图像,求函数的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题,其中所有正确命题的序号是__________

①抛物线的准线方程为

②过点作与抛物线只有一个公共点的直线仅有1条;

是抛物线上一动点,以为圆心作与抛物线准线相切的圆,则此圆一定过定点.

④抛物线上到直线距离最短的点的坐标为.

查看答案和解析>>

同步练习册答案