精英家教网 > 高中数学 > 题目详情

【题目】已知数列为等差数列,.

(1) 求数列的通项公式;

(2)求数列的前n项和.

【答案】(1);(2).

【解析】试题分析:利用等差数列通项公式列出方程组,求出首项和公差,由此能求出数列

通项公式;(2)由(1)可得,利用错位相减法及等比数列前项和公式能求出数列的前n项和.

试题解析: (1)设数列的公差为,依题意得方程组解得.

所以的通项公式为.

(2)由(1)可得

所以.

【 方法点睛】本题主要考查等差数列的通项公式、等比数列的求和公式以及错位相减法求数列的前 项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆=1(a>b>0)的焦点分别为F1(0,-1),F2(0,1),且3a2=4b2.

(1)求椭圆的方程;

(2)设点P在这个椭圆上,且|PF1|-|PF2|=1,求∠F1PF2的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等边△ABC与直角梯形ABDE所在平面垂直,BDAEBD=2AEAEABMAB的中点.

(1)证明:CMDE

(2)在边AC上找一点N,使CD∥平面BEN.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若a=1,求f(x)的极值;

(2)若存在x0[1,e],使得f(x0)<g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:

总计

读营养说明

16

28

44

不读营养说明

20

8

28

总计

36

36

72

(1)根据以上列联表判断,能否在犯错误的概率不超过0.005的前提下认为性别和是否看营养说明有关系呢?

(2)从被询问的28名不读营养说明的大学生中,随机抽取2名学生,求抽到女生人数

的分布列及数学期望.

附:

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,如果同时满足以下三条:对任意的,总有,都有成立,则称函数为理想函数.

(1) 若函数为理想函数,求的值;

(2)判断函数是否为理想函数,并予以证明;

(3) 若函数为理想函数,假定,使得,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中,若的三条边长,则下列结论:①对于一切都有;②存在使不能构成一个三角形的三边长;③为钝角三角形,存在,使,其中正确的个数为______

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.

1)写出年利润(万元)关于年产量(千件)的函数解析式;

2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(c为常数),且f(1)=0.

(1)求c的值;

(2)证明函数f(x)在[0,2]上是单调递增函数;

(3)已知函数g(x)=f(ex),判断函数g(x)的奇偶性.

查看答案和解析>>

同步练习册答案