精英家教网 > 高中数学 > 题目详情

【题目】已知a=(12),b=(-2,n),ab的夹角是45°.

(1) 求b

(2) cb同向,且aca垂直,求向量c的坐标.

【答案】(1)(-2,6).(2)(-1,3)

【解析】试题分析(1)由向量夹角公式、向量模的坐标表示、向量数量积的坐标表示得关于n的方程,解方程可得n=6,即得b;(2)由向量平行可设c=λb(λ>0),由向量垂直可得数量积为零,根据向量数量积坐标表示可得关于λ的方程,解得λ值 ,即得向量c的坐标

试题解析:解:(1) ∵ a·b=2n-2,|a||b|

∴ cos 45°=

∴ 3n2-16n-12=0(n>1),

∴ n=6或n=- (舍去),∴ b=(-2,6).

(2) 由(1)知,a·b=10,|a|2=5.

cb同向,故可设c=λb(λ>0).

aca垂直,∴ (ca)·a=0,

∴ λb·a|a|2=0,∴ λ=.

cb=(-1,3).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校为了了解高一新生男生得到体能状况,从高一新生中抽取若干名男生进行铅球测试,把所得数据(精确到0.1米)进行整理后,分成6组画出频率分布直方图的一部分(如下图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.

1请将频率分布直方图补充完整;

(2)该校参加这次铅球测试的男生有多少人?

(3)若成绩在8.0米以上(含8.0米)的为合格,试求这次铅球测试的成绩的合格率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的值域;

(2)设函数,若对任意,总存在,使得

立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为圆上的动点, 为定点,

(1)求线段中点M的轨迹方程;

(2)若,求线段中点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)写出曲线的直角坐标方程;

2)已知直线轴的交点为,与曲线的交点为,若的中点为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,空间四边形ABCD中,EFGH分别是ABBCCDDA上的点,且满足

(1)求证:四边形EFGH是梯形;

(2)若BDa,求梯形EFGH的中位线的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自点A(-33)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(4,-3)B(2,-1)和直线l4x3y20

1求在直角坐标平面内满足|PA||PB|的点P的方程;

2求在直角坐标平面内一点P满足|PA||PB|且点P到直线l的距离为2的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在高为2的梯形中, ,过分别作 ,垂足分别为。已知,将梯形沿同侧折起,得空间几何体,如图2。

(1)若,证明:

(2)若,证明:

(3)在(1),(2)的条件下,求三棱锥的体积。

查看答案和解析>>

同步练习册答案