精英家教网 > 高中数学 > 题目详情

【题目】已知函数,不等式恒成立.

(1)求函数的极值和函数的图象在点处的切线方程;

(2)求实数的取值的集合

(3)设,函数,其中为自然对数的底数,若关于的不等式至少有一个解,求的取值范围.

【答案】(1)极大值为无极小值 ;(2) ;(3).

【解析】

(1)求导,然后利用导数大于零和导数小于零,求得函数的单调区间,由此求得函数的极值.通过求出切点和斜率,利用点斜式求得切线方程.(2)时不合题意.时,对两边取以为底的对数,转化为恒成立.根据(1)中函数的单调性以及极大值,可求得的值.(3)将关于的不等式左边构造为函数,对分成两类,分别利用函数的值域,和函数的导数,求解出的取值范围.

(1),则时,时,递增,在递减,故,故函数的图象在点处的切线方程为:

(2)显然,不合题意。当时,由则有故依题意知恒成立.由前面的结论知,当时,取得最大值,故.又可知,当时,取得最大值,故 .,综上得 .

(3)设.时,所以不存在 使得成立.故不合题意.当时,.因为, 所以恒成立,故单调递减,,则依题意有.解之得的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知动点M与到点N(30)的距离比动点M到直线x=-2的距离大1,记动圆M的轨迹为曲线C.

(1)求曲线C的方程;

(2)若直线l与曲线C相交于AB:两点,且(O为坐标原点),证明直线l经过定点H,并求出H点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)若是函数的一个极值点,求实数的值.

)设,当时,函数的图象恒不在直线的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形,平面的中点.

1)证明:∥平面.

2)设二面角,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在一个周期内的图象如下图所示.

1)求函数的解析式;

2)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一台还可以用的机器由于使用的时间较长它按不同的转速生产出来的某机械零件有一些会有缺陷每小时生产有缺陷零件的多少随机器运转的速率而变化下表为抽样试验结果

转速x/

16

14

12

8

每小时生产有缺陷的零件数y(件)

11

9

8

5

(1)画出散点图

(2)如果yx有线性相关的关系,求回归直线方程

(3)若实际生产中允许每小时生产的产品中有缺陷的零件最多为10那么机器的运转速度应控制在什么范围内

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,圆,一动圆在轴右侧与轴相切,同时与圆相外切,此动圆的圆心轨迹为曲线C,曲线E是以为焦点的椭圆。

(1)求曲线C的方程;

(2)设曲线C与曲线E相交于第一象限点P,且,求曲线E的标准方程;

(3)在(1)、(2)的条件下,直线与椭圆E相交于A,B两点,若AB的中点M在曲线C上,求直线的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从四所高校中选2所.

(1)求甲、乙、丙三名同学都选高校的概率;

(2)若甲必选,记为甲、乙、丙三名同学中选校的人数,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中,平面DAC的中点.

1)求证:平面

2)求证:平面

3)设E上一点,试确定E的位置使平面平面BDE,并说明理由.

查看答案和解析>>

同步练习册答案