精英家教网 > 高中数学 > 题目详情
先将函数f(x)=sinxcosx的图象向左平移
π
4
个长度单位,再保持所有点的纵坐标不变,横坐标压缩为原来的
1
2
,得到函数g(x)的图象,则使g(x)为增函数的一个区间是(  )
A、(
π
4
π
2
B、(
π
2
,π)
C、(0,
π
2
D、(-π,0)
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:根据函数y=Asin(ωx+φ)的图象变换得到函数g(x)的解析式,从而可求使g(x)为增函数的一个区间.
解答: 解:∵f(x)=sinxcosx=
1
2
sin2x,
∴向左平移
π
4
个长度单位,得到的解析式为f(x+
π
4
)=
1
2
sin[2(x+
π
4
)]=
1
2
sin(2x+
π
2
)=
1
2
cos2x,
再保持所有点的纵坐标不变,横坐标压缩为原来的
1
2
,得到函数g(x)=
1
2
cos4x,
∴令2kπ-π≤4x≤2kπ,k∈Z可解得
2
-
π
4
≤x≤
2
,k∈Z,
∴k=1时,有使g(x)为增函数的一个区间是(
π
4
π
2
),
故选:A.
点评:本题主要考查了函数y=Asin(ωx+φ)的图象变换,余弦函数的单调性,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

集合M={0,1,2}的子集为(  )
A、{0},{1},{2}
B、{0},{1},{2},{1,2}
C、{0},{1},{2},{1,2}
D、{0},{1},{2},{1,2},{0,1},{0,2},{0,1,2},∅

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:(1+
3
tan15°
1-sin215°

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(sin2θ,cosθ),
b
=(cosθ,1),则“
a
b
”是“tanθ=
1
2
”成立的
 
条件 (选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).

查看答案和解析>>

科目:高中数学 来源: 题型:

造船厂年造船量最多20艘,造船x艘产值函数为R(x)=3700x+45x2-10x3(单位:万元),成本函数c(x)=460x+5000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x)
(1)求利润函数P(x)及边际利润函数MP(x)(利润=产值-成本);
(2)问年造船量安排多少艘时,公司造船利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,a=10,B=60°,C=45°,解此三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(0,2)已知直线l:y=kx+b与圆C:x2+y2=4相交与A,B两点,当|PA|•|PB|=4时,试证明点P到直线l的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,既是偶函数又在区间(0,1)上单调递减的函数为(  )
A、y=
1
x
B、y=lnx
C、y=cosx
D、y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠A=90°,D是AC上一点,E是BC上一点,若AB=
1
2
BD,CE=
1
2
EB,∠BDE=120°,CD=3,则BC=
 

查看答案和解析>>

同步练习册答案