精英家教网 > 高中数学 > 题目详情

【题目】函数

1时,求函数的定义域;

2是否存在实数,使函数递减,并且最大值为1,若存在,求出的值;若不存在,请说明理由.

【答案】12不存在

【解析】

试题分析:1由题意可得,3-2x>0,解不等式可求函数fx的定义域;2假设存在满足条件的a,由a>0且a1可知函数t=3-ax为单调递减的函数,则由复合函数的单调性可知,y=logat在定义域上单调递增,且t=3-ax>0在[1,2]上恒成立,f1=1,从而可求a的范围

试题解析:1由题意:,即

函数的定义域为 ………4分

2,则上恒正,上单调递减,

………7分

又函数递减,上单调递减,

………9分

函数的最大值为1,

………11分

矛盾,不存在. ………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线l1过点A(0,1),l2过点B(5,0),如果l1l2,且l1与l2的距离为5,求l1、l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要产生[3,3]上的均匀随机数y,现有[0,1]上的均匀随机数x,则y可取为(  )

A. 3x B. 3x

C. 6x3 D. 6x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】商场销售某一品牌的羊毛衫,购买人数是每件羊毛衫标价的一次函数,标价越高,购买人数越少,把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元,已知这种羊毛衫的成本价是100元/件,商场以高于成本价的价格(标价)出售.求:

(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?

(2)通常情况下,获取最大利润只是一种理想结果,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别是,离心率,过点且垂直于轴的直线被椭圆截得的线段长为.

(1)求椭圆的方程;

(2)若直线过椭圆的右焦点,且与轴不重合,交椭圆两点,过点且与垂直的直线与圆交于两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两名同学的数学学习况,对他们的次数测试成绩(满分分)进行统计,作出如下的茎叶图,其中处的数字糊不清,已知甲同成绩的中位数是,乙同学成绩的平均分是分.

(1)求的值;

(2)现从成绩在之间的试卷中随机抽取两份进行分析,求恰抽到一份甲同学试卷的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且.

(1)求函数的极值;

(2)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为增强市民的节能环保意识,郑州市面向全市征召义务宣传志愿者. 从符合条件的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示,其中年龄分组区是: .

(Ⅰ)求图中的值,并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;

(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人. 记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间;

(2)若对定义域内的任意恒成立,求实数的取值范围。

查看答案和解析>>

同步练习册答案