分析 DD1与平面AB1C相交;由A1D∥B1C,知A1D∥平面AB1C;A1D1与平面AB1C相交;C1D1与平面AB1C相交;由O1D∥OB1,知O1D∥平面AB1C.
解答 解:在正方体ABCD-A1B1C1D1中,O1、O为上、下底面的中心,
∵DD1∥BB1,BB1∩平面AB1C=B1,
∴DD1与平面AB1C相交;
∵A1D∥B1C,AD1?平面AB1C,B1C?平面AB1C,∴A1D∥平面AB1C;
A1D1∥B1C1,B1C1∩平面AB1C=B1,
∴A1D1与平面AB1C相交;
∵C1D1∥A1B1,A1B1∩平面AB1C=B1,
∴C1D1与平面AB1C相交;
∵O1D∥OB1,OB1?平面AB1C,
∴O1D∥平面AB1C.
∴在直线D1D、A1D、A1D1、C1D1、O1D与平面AB1C平行的直线有2条.
故答案为:2.
点评 本题考查直线与平行的位置关系的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?n∈N,3n<n2+1 | B. | $?{n_0}∈N,{3^{n_0}}<n_0^2+1$ | ||
C. | ?n∈N,3n≤n2+1 | D. | $?{n_0}∈N,{3^{n_0}}≥n_0^2+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 锐角三角形 | B. | 钝角三角形 | C. | 直角三角形 | D. | 斜三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com