【题目】某班级体育课进行一次篮球定点投篮测试,规定每人最多投3次,每次投篮的结果相互独立.在处每投进一球得3分,在处每投进一球得2分,否则得0分.将学生得分逐次累加并用表示,如果的值不低于3分就判定为通过测试,立即停止投篮,否则应继续投篮,直到投完三次为止.现有两种投篮方案:方案1:先在处投一球,以后都在处投;方案2:都在处投篮.已知甲同学在处投篮的命中率为,在处投篮的命中率为.
(1)若甲同学选择方案1,求他测试结束后所得总分的分布列和数学期望;
(2)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.
科目:高中数学 来源: 题型:
【题目】如图,已知F是抛物线C:的焦点,过E(﹣l,0)的直线与抛物线分別交于A,B两点(点A,B在x轴的上方).
(1)设直线AF,BF的斜率分別为,,证明:;
(2)若ABF的面积为4,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,满足,.数列满足,,且.
(1)求数列和的通项公式;
(2)若,数列的前项和为,对任意的,都有,求实数的取值范围;
(3)是否存在正整数,,使,,()成等差数列,若存在,求出所有满足条件的,,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)已知函数f(x)=-2lnx+x2-2ax+a2,其中a>0.
(Ⅰ)设g(x)为f(x)的导函数,讨论g(x)的单调性;
(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是上的偶函数,对于任意,都有成立,当,且时,都有,给出下列命题,其中所有正确命题为( ).
A.
B.直线是函数的图象的一条对称轴
C.函数在上为增函数
D.函数在上有四个零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)分别写出直线的普通方程与曲线的直角坐标方程;
(Ⅱ)已知点,直线与曲线相交于,两点,若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,分别为的上、下顶点且为外的动点,且到上点的最近距离为1.
(1)求椭圆的标准方程;
(2)当时,设直线分别与椭圆交于两点,若的面积是的面积的倍,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com