精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a为常数)
(1)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;
(2)在(1)的条件下,若方程f(x)+a+1=0在x∈(0,2]上有且只有一个实根,求a的取值范围.

【答案】解:(1)∵f(x)=(x﹣1)2+a(lnx﹣x+1),
∴f′(x)=2(x﹣1)+a(﹣1)=(x﹣1)(2﹣);
且f(1)=0+a(ln1﹣1+1)=0,
①当a≤2时,f′(x)>0在(1,+∞)上恒成立,
故f(x)>=f(1)=0;
②当a>2时,
可知f(x)在(1,)上是减函数,在(,+∞)上是增函数;
故f()<0;
综上所述,a≤2;
(2)f(x)+a+1=(x﹣1)2+a(lnx﹣x+1)+a+1,
当a<0时,f(x)+a+1在(0,1]上是减函数,在(1,2]上是增函数;
((x﹣1)2+a(lnx﹣x+1)+a+1)=+∞,
f(1)+a+1=a+1,f(2)+a+1=1+a(ln2﹣1)+a+1;
故a+1=0或1+a(ln2﹣1)+a+1<0;
故a=﹣1或a<﹣
当a=0时,f(x)+a+1=(x﹣1)2+1>0,故不成立;
当0<a<2时,
f(x)+a+1在(0,]上是增函数,在(,1]上是减函数,在(1,2]上是增函数;
((x﹣1)2+a(lnx﹣x+1)+a+1)=﹣∞,
f(1)+a+1=a+1>0,
故方程f(x)+a+1=0在x∈(0,2]上有且只有一个实根,
当a=2时,f(x)+a+1=(x﹣1)2+2(lnx﹣x+1)+2+1=(x﹣1)2+2(lnx﹣x+1)+3,
故f(x)在(0,2]上是增函数;
((x﹣1)2+2(lnx﹣x+1)+3)=﹣∞,f(1)=3>0;
故方程f(x)+a+1=0在x∈(0,2]上有且只有一个实根,
综上所述,a<﹣或a=﹣1或0<a≤2.
【解析】(1)求导f′(x)=2(x﹣1)+a(﹣1)=(x﹣1)(2﹣),且f(1)=0+a(ln1﹣1+1)=0,从而讨论以确定函数的单调性,从而解得;
(2)化简f(x)+a+1=(x﹣1)2+a(lnx﹣x+1)+a+1,从而讨论以确定函数的单调性,从而解得.
【考点精析】解答此题的关键在于理解函数的最大(小)值与导数的相关知识,掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量=(2,0), =(1,4).

(Ⅰ)若向量k+2平行,求实数k的值;

(Ⅱ)若向量k+2的夹角为锐角,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆x2+y2+2x﹣4y﹣6=0的圆心和半径分别是(
A.(﹣1,﹣2),11
B.(﹣1,2),11
C.(﹣1,﹣2),
D.(﹣1,2),

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知可导函数y=f(x)在点P(x0 , f(x0))处切线为l:y=g(x)(如图),设F(x)=f(x)﹣g(x),则(  )

A.F′(x0)=0,x=x0是F(x)的极大值点
B.F′(x0)=0,x=x0是F(x)的极小值点
C.F′(x0)≠0,x=x0不是F(x)的极值点
D.F′(x0)≠0,x=x0是F(x)的极值点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,过点作直线交圆两点,分别过两点作圆的切线,当两条切线相交于点时,则点的轨迹方程为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC﹣A1B1C1 , 底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求的长;
(2)求cos()的值;
(3)求证A1B⊥C1M.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Acos(ωx+α)(A>0,ω>0,0<α<π)为奇函数,该函数的部分图象如图所示,△EFG是边长为2的等边三角形,则f(1)的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=

(1)求证:AB⊥PC;
(2)求二面角B一PC﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,A(1,1),B(2,0),| |=1.
(1)求 夹角;
(2)若 垂直,求点C的坐标;
(3)求| + + |的取值范围.

查看答案和解析>>

同步练习册答案