9£®ÔÚ¼«×ø±êÖУ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$cos£¨¦È-$\frac{¦Ð}{4}$£©£¬ÒÔ¼«µãOΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+3t}\\{y=-1+4t}\end{array}\right.$£¨tΪ²ÎÊý£©
£¨1£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÆÕͨ·½³Ì£®
£¨2£©ÊÔÅжÏÖ±ÏßlÓëÇúÏßCµÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$cos£¨¦È-$\frac{¦Ð}{4}$£©£¬Õ¹¿ªÎª¦Ñ2=2$\sqrt{2}$¡Á$\frac{\sqrt{2}}{2}$£¨¦Ñcos¦È+¦Ñsin¦È£©£¬°Ñ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$´úÈë¼´¿ÉµÃ³ö£®Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+3t}\\{y=-1+4t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¼´¿É»¯ÎªÆÕͨ·½³Ì£®
£¨2£©Ô²ÐÄC£¨1£¬1£©£¬°ë¾¶R=$\sqrt{2}$£®Çó³öÔ²ÐÄCµ½Ö±ÏߵľàÀëdÓë°ë¾¶±È½Ï¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$cos£¨¦È-$\frac{¦Ð}{4}$£©£¬Õ¹¿ªÎª¦Ñ2=2$\sqrt{2}$¡Á$\frac{\sqrt{2}}{2}$£¨¦Ñcos¦È+¦Ñsin¦È£©£¬¡àx2+y2=2x+2y£¬Å䷽Ϊ£¨x-1£©2+£¨y-1£©2=2£®
Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+3t}\\{y=-1+4t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt»¯Îª4x-3y+1=0£®
£¨2£©Ô²ÐÄC£¨1£¬1£©£¬°ë¾¶R=$\sqrt{2}$£®
Ô²ÐÄCµ½Ö±ÏߵľàÀëd=$\frac{|4-3+1|}{\sqrt{{4}^{2}+£¨-3£©^{2}}}$=$\frac{2\sqrt{5}}{5}$$£¼\sqrt{2}$£¬
¡àÖ±ÏßlÓëÇúÏßCµÄÏཻ£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÔ²µÄλÖùØϵ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÉèA={£¨x£¬y£©|x-y+3=0}£¬B={£¨x£¬y£©|2x+3y=9}£¬ÔòA¡ÉB={£¨0£¬3£©}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®£¨log32+log23£©2-$\frac{lo{g}_{3}2}{lo{g}_{2}3}$-$\frac{lo{g}_{2}3}{lo{g}_{3}2}$µÄÖµÊÇ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®½â·½³Ì£º|x-1|+|x-5|=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ö±Ïßy=kx+1µÄÒ»°ãÐÎʽ·½³ÌΪ2x+3y+a=0£¬ÔòkÓëaµÄÖµ·Ö±ðΪ£¨¡¡¡¡£©
A£®-$\frac{2}{3}$£¬-1B£®-$\frac{2}{3}$£¬-3C£®-$\frac{3}{2}$£¬-1D£®-$\frac{3}{2}$£¬-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÇóÓëÖ±Ïßx-y=0ÏàÇУ¬Ô²ÐÄÔÚ3x-y=0ÉÏ£¬ÇÒ±»yÖá½ØµÃµÄÏÒ³¤Îª2$\sqrt{2}$µÄÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èô¹ØÓÚxµÄ²»µÈʽ$\frac{x+a}{{x}^{2}+4x+3}$£¾0µÄ½âΪ-3£¼x£¼-1»òx£¾2£¬ÔòaµÄֵΪ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®»ý·Ö${¡Ò}_{-1}^{1}$£¨$\sqrt{1-{x}^{2}}$+xsin2x+x2£©dx=$\frac{¦Ð}{2}+\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªº¯Êýf£¨2x-1£©µÄ¶¨ÒåÓòΪ£¨-2£¬1]£¬Ôòº¯Êýf£¨x-3£©µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
A£®£¨-2£¬1]B£®£¨-5£¬1]C£®£¨-2£¬4]D£®£¨-5£¬4]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸