·ÖÎö £¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$cos£¨¦È-$\frac{¦Ð}{4}$£©£¬Õ¹¿ªÎª¦Ñ2=2$\sqrt{2}$¡Á$\frac{\sqrt{2}}{2}$£¨¦Ñcos¦È+¦Ñsin¦È£©£¬°Ñ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$´úÈë¼´¿ÉµÃ³ö£®Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+3t}\\{y=-1+4t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¼´¿É»¯ÎªÆÕͨ·½³Ì£®
£¨2£©Ô²ÐÄC£¨1£¬1£©£¬°ë¾¶R=$\sqrt{2}$£®Çó³öÔ²ÐÄCµ½Ö±ÏߵľàÀëdÓë°ë¾¶±È½Ï¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$cos£¨¦È-$\frac{¦Ð}{4}$£©£¬Õ¹¿ªÎª¦Ñ2=2$\sqrt{2}$¡Á$\frac{\sqrt{2}}{2}$£¨¦Ñcos¦È+¦Ñsin¦È£©£¬¡àx2+y2=2x+2y£¬Å䷽Ϊ£¨x-1£©2+£¨y-1£©2=2£®
Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+3t}\\{y=-1+4t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt»¯Îª4x-3y+1=0£®
£¨2£©Ô²ÐÄC£¨1£¬1£©£¬°ë¾¶R=$\sqrt{2}$£®
Ô²ÐÄCµ½Ö±ÏߵľàÀëd=$\frac{|4-3+1|}{\sqrt{{4}^{2}+£¨-3£©^{2}}}$=$\frac{2\sqrt{5}}{5}$$£¼\sqrt{2}$£¬
¡àÖ±ÏßlÓëÇúÏßCµÄÏཻ£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÔ²µÄλÖùØϵ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | -$\frac{2}{3}$£¬-1 | B£® | -$\frac{2}{3}$£¬-3 | C£® | -$\frac{3}{2}$£¬-1 | D£® | -$\frac{3}{2}$£¬-3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨-2£¬1] | B£® | £¨-5£¬1] | C£® | £¨-2£¬4] | D£® | £¨-5£¬4] |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com