精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左顶点为,右焦点为,点在椭圆上.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点,直线分别与轴交于点,在轴上,是否存在点,使得无论非零实数怎样变化,总有为直角?若存在,求出点的坐标;若不存在,请说明理由.

【答案】(1);(2)存在点,使得无论非零实数怎么变化,总有为直角,点坐标为.

【解析】试题分析:(1)依题意,,结合点在椭圆上及,即可求得椭圆的方程;(2)设,则,联立直线与椭圆的方程,求得,根据所在直线方程,即可分别得到的坐标,结合为直角,列出等式,即可求解.

试题解析:(1)依题意,.

∵点上,

又∵

∴椭圆方程为

(2)假设存在这样的点,设,则,联立,解得

所在直线方程为

同理可得.

∴存在点,使得无论非零实数怎么变化,总有为直角,点坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(

A.若函数上有零点,则一定有

B.函数既不是奇函数也不是偶函数

C.若函数的值域为,则实数的取值范围是

D.若函数满足条件,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设奇函数在(0+∞)上为单调递增函数,且,则不等式的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是一个由数字1,2,3,4,5,6,7,8,9组成的位正整数,并同时满足如下两个条件

(1)数字1,2,…,中各出现两次

(2)每两个相同的数字之间恰有个数字

此时,我们称这样的正整数好数”.例如,当时,可以是312 132.试确定满足条件的正整数的值,并各写出一个相应的好数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为,当时,产品为一等品;当时,产品为二等品;当时,产品为三等品.现有甲、乙两条生产线,各生产了100件该产品,测量每件产品的质量指标值,得到下面的试验结果.(以下均视频率为概率)

甲生产线生产的产品的质量指标值的频数分布表:

指标值分组

频数

10

30

40

20

乙生产线产生的产品的质量指标值的频数分布表:

指标值分组

频数

10

15

25

30

20

(1)若从乙生产线生产的产品中有放回地随机抽取3件,求至少抽到2件三等品的概率;

(2)若该产品的利润率与质量指标值满足关系:,其中,从长期来看,哪条生产线生产的产品的平均利润率更高?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入(单位:万元)满足,乙城市收益Q与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).

(1)当甲城市投资50万元时,求此时公司总收益;

(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,椭圆的极坐标方程为,其左焦点在直线上.

(1)若直线与椭圆交于两点,求的值;

(2)求椭圆的内接矩形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产的产品在出厂前都要做质量检测,每件一等品都能通过检测,每件二等品通过检测的概率为.现有件产品,其中件是一等品, 件是二等品.

(Ⅰ)随机选取件产品,设至少有一件通过检测为事件,求事件的概率;

(Ⅱ)随机选取件产品,其中一等品的件数记为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出09之间取整数值的随机数,指定01表示没有击中目标,23456789表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:

根据以上数据估计该射击运动员射击4次至少击中3次的概率为_______.

查看答案和解析>>

同步练习册答案