精英家教网 > 高中数学 > 题目详情
已知点A(2,1),抛物线y2=4x的焦点是F,若抛物线上存在一点P,使得|PA|+|PF|最小,则P点的坐标为(  )
A.(2,1)B.(1,1)C.D.
D
抛物线的焦点为F(1,0),准线方程为x=-1,过点P作准线的垂线交准线于B,则|PF|=|PB|,所以|PA|+|PF|=|PA|+|PB|,所以当A,P,B三点共线时,|PA|+|PF|最小,此时yP=yA=1,所以xP,即P点的坐标为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点(1,0),且与直线相切.
(1)求动圆圆心的轨迹方程;
(2)设是轨迹上异于原点的两个不同点,直线的倾斜角分别为,①当时,求证直线恒过一定点
②若为定值,直线是否仍恒过一定点,若存在,试求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点和定直线,动点与定点的距离等于点到定直线的距离,记动点的轨迹为曲线.
(1)求曲线的方程.
(2)若以为圆心的圆与曲线交于不同两点,且线段是此圆的直径时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,设P是抛物线C1:x2=y上的动点,过点P作圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A、B两点.

(1)求圆C2的圆心M到抛物线C1准线的距离;
(2)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.

(1)求实数b的值.
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线yx2上的点到直线xy+1=0的最短距离为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

顶点在原点,准线与轴垂直,且经过点的抛物线方程是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=2px焦点F作直线l交抛物线于AB两点,O为坐标原点,则△ABO为(  ).
A.锐角三角形B.直角三角形
C.不确定D.钝角三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为抛物线的焦点,为该抛物线上三点,若,则的值为  (  )
A.B.C.D.12

查看答案和解析>>

同步练习册答案