精英家教网 > 高中数学 > 题目详情
17.已知ξ~N(3,σ2),若P(ξ≤2)=0.2,则P(ξ≤4)等于(  )
A.0.2B.P(-2≤ξ≤2)=0.4C.P(ξ>2)=0.2D.P(ξ≤4)=0.8

分析 根据随机变量X服从正态分布N(3,a2),看出这组数据对应的正态曲线的对称轴x=3,根据正态曲线的特点,得到P(ξ≤4)=1-P(ξ≤2),得到结果.

解答 解:∵随机变量X服从正态分布N(3,a2),
μ=3,得对称轴是x=3.
P(ξ≤2)=0.2,
∴P(ξ≤4)=1-P(ξ≤2)=0.8.
故选:D.

点评 本题考查正态曲线的形状认识,从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值 从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.k为何值时,不等式0<$\frac{3{x}^{2}+kx+6}{{x}^{2}-x+1}$≤6对任意实数x恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(3,-4),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角等于(  )
A.arcsin(-$\frac{\sqrt{2}}{10}$)B.arccos$\frac{\sqrt{2}}{10}$C.arccos($\frac{\sqrt{2}}{10}$)D.-arccos$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某高级中学采用系统抽样的方法从全体1260名学生中抽取60名学生做视力健康检查,现将1260名学生从1~1260进行编号,若在抽取的样本中有一个编号为355,则样本中最小的编号是(  )
A.19B.18C.17D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法不正确的是(  )
A.命题“?x∈R,x2≥0”的否定为“?x0∈R,x2<0”
B.“a>b”是“ac2>bc2”的必要不充分条件
C.“若x2-6x+5≠0,则x≠1”是真命题
D.命题p:A成立,命题q:B成立,则命题¬p∨¬q表示A,B至少有一个成立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:“?x>0,ex≥1”,则¬p为(  )
A.?x≤0,使得ex≤1B.?x≤0,使得ex<1C.?x>0,使得ex<1D.?x>0,使得ex≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知定义域为R的函数f(x)=$\frac{{2}^{x}+b}{{2}^{x}+a}$是奇函数.
(1)求a,b的值;
(2)判断f(x)的单调性(不用证明);
(3)当t∈R时,不等式f(t2-2t)+f(2t2-k)>0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.化简:C${\;}_{3}^{3}$+C${\;}_{4}^{3}$+C${\;}_{5}^{3}$+C${\;}_{6}^{3}$=35.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设Ω是由满足下列两个条件的函数f(x)构成的集合:①方程f(x)-x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(0)<1.
(1)判断函数g(x)=$\frac{x}{2}$-$\frac{lnx}{2}$+3(x>1)是否为集合Ω中的元素,并说明理由;
(2)设函数f(x)为集合Ω中的任意一个元素,对于定义域中任意的α,β,当|α-2015|<1,且|β-2015|<1时,证明:|f(α)-f(β)|<2.

查看答案和解析>>

同步练习册答案