10£®Ä³µ÷²éÕß´Óµ÷²éÖлñ֪ij¹«Ë¾½üÄêÀ´¿ÆÑзÑÖ§³ö£¨xi£© ÓÃÓ빫˾Ëù»ñµÃÀûÈó£¨yi£©µÄͳ¼Æ×ÊÁÏÈç±í£º
¿ÆÑзÑÓÃÖ§³ö£¨xi£©ÓëÀûÈó£¨yi£©Í³¼Æ±í   µ¥Î»£ºÍòÔª
Äê·Ý¿ÆÑзÑÓÃÖ§³ö£¨xi£©ÀûÈó£¨yi£©
2011
2012
2013
2014
2015
2016
5
11
4
5
3
2
31
40
30
34
25
20
ºÏ¼Æ30180
£¨1£©ÓÉÉ¢µãͼ¿ÉÖª£¬¿ÆÑзÑÓÃÖ§³öÓëÀûÈóÏßÐÔÏà¹Ø£¬ÊÔ¸ù¾ÝÒÔÉÏÊý¾ÝÇó³öy¹ØÓÚxµÄ»Ø¹éÖ±Ïß·½³Ì£»
£¨2£©µ±x=xiʱ£¬ÓɻعéÖ±Ïß·½³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$µÃµ½µÄº¯ÊýÖµ¼ÇΪ$\stackrel{¡Ä}{{y}_{i}}$£¬ÎÒÃǽ«¦Å=|$\stackrel{¡Ä}{{y}_{i}}$-yi|³ÆΪÎó²î£»
ÔÚ±íÖÐ6×éÊý¾ÝÖÐÈÎÈ¡Á½×éÊý¾Ý£¬ÇóÁ½×éÊý¾ÝÖÐÖÁÉÙÓÐÒ»×éÊý¾ÝÎó²îСÓÚ3µÄ¸ÅÂÊ£»
²Î¿¼¹«Ê½£ºÓÃ×îС¶þ³Ë·¨ÇóÏßÐԻع鷽³ÌµÄϵÊý¹«Ê½£º
$\stackrel{¡Ä}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{£¨\overline x£©}^2}}}}$=$\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-}\overline y£©}}{{\sum_{i=1}^n{{{£¨x_i^{\;}-\overline x£©}^2}}}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$£®

·ÖÎö £¨1£©¸ù¾ÝËù¸øµÄÊý¾Ý£¬ÀûÓÃ×îС¶þ³Ë·¨ÐèÒªµÄ6¸öÊý¾Ý£¬ºá±êºÍ×ݱêµÄƽ¾ùÊý£¬ºá±êºÍ×ݱêµÄ»ýµÄºÍ£¬Óëºá±êµÄƽ·½ºÍ£¬´úÈ빫ʽÇó³öbµÄÖµ£¬ÔÙÇó³öaµÄÖµ£¬Ð´³öÏßÐԻع鷽³Ì£®
£¨2£©ÁоٳöËùÓеĻù±¾Ê¼þÔÙÇó³öÂú×ãÌõ¼þµÄʼþµÄ¸öÊý£¬×÷É̼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃÈçϱí¸ñ

ÐòºÅxiyixi•yixi2
153115525
21140440121
343012016
453417025
5325759
6220404
$\overline{{x}_{i}}$=5$\overline{{y}_{i}}$=30$\sum_{i=1}^{6}$xi•yi=1000$\sum_{i=1}^{6}$xi2=200
$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{£¨\overline x£©}^2}}}}$=$\frac{1000-6¡Á5¡Á30}{200-6¡Á52}$=2£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=30-2¡Á5=20£¬
¡à»Ø¹é·½³ÌÊÇ£º$\widehat{y}$=2x+20¡­£¨6·Ö£©
£¨2£©¸÷×éÊý¾Ý¶ÔÓ¦µÄÎó²îÈçÏÂ±í£º
ÐòºÅxiyi$\widehat{{y}_{i}}$¦Å
1531301
21140422
3430282
4534304
5325261
6220244
»ù±¾Ê¼þ¿Õ¼ä¦¸Îª£º
¦¸={£¨1£¬2£©£¬£¨1£¬3£©£¬£¨1£¬4£©£¬£¨1£¬5£©£¬£¨1£¬6£©£¬£¨2£¬3£©£¬£¨2£¬4£©£¬£¨2£¬5£©£¬£¨2£¬6£©£¬£¨3£¬4£©£¬£¨3£¬5£©£¬£¨3£¬6£©£¬£¨4£¬5£©£¬£¨4£¬6£©£¬£¨5£¬6£©}
¹²15¸ö»ù±¾Ê¼þ
ʼþ¡°ÖÁÉÙÓÐÒ»×éÊý¾ÝÓë»Ø¹éÖ±Ïß·½³ÌÇóµÃµÄÊý¾ÝÎó²îСÓÚ3¡±°üº¬µÄ»ù±¾Ê¼þÓУº£¨1£¬2£©£¬£¨1£¬3£©£¬£¨1£¬4£©£¬£¨1£¬5£©£¬£¨1£¬6£©£¬£¨2£¬3£©£¬£¨2£¬4£©£¬£¨2£¬5£©£¬£¨2£¬6£©£¬£¨3£¬4£©£¬£¨3£¬5£©£¬£¨3£¬6£©£¬£¨4£¬5£©£¬£¨5£¬6£©£¬¹²14¸ö»ù±¾Ê¼þ
¡àP=$\frac{14}{15}$
¼´ÔÚ±íÖÐ6×éÊý¾ÝÖÐÈÎÈ¡Á½×éÊý¾Ý£¬Á½×éÊý¾ÝÖÐÖÁÉÙÓÐÒ»×éÊý¾ÝÓë»Ø¹éÖ±Ïß·½³ÌÇóµÃµÄÊý¾ÝÎó²îСÓÚ3µÄ¸ÅÂÊΪ$\frac{14}{15}$£»¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÏßÐԻعé·ÖÎöµÄÓ¦Ó㬱¾Ìâ½âÌâµÄ¹Ø¼üÊÇÀûÓÃ×îС¶þ³Ë·¨ÈÏÕæ×ö³öÏßÐԻع鷽³ÌµÄϵÊý£¬ÕâÊÇÕû¸öÌâÄ¿×ö¶ÔµÄ±Ø±¸Ìõ¼þ£¬±¾ÌâÊÇÒ»¸öÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖª¦ÁÊǵڶþÏóÏ޽ǣ¬ÇÒsin¦Á=$\frac{3}{5}$£¬Ôòcos£¨¦Ð-¦Á£©=£¨¡¡¡¡£©
A£®$\frac{4}{5}$B£®-$\frac{4}{5}$C£®$\frac{3}{5}$D£®-$\frac{3}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}-6ax-1£¬x¡Ü1}\\{{a}^{x}-7£¬x£¾1}\end{array}\right.$£¬¶ÔÈÎÒâx1¡Ùx2£¬¶¼ÓÐ$\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¼0£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨$\frac{1}{3}$£¬1£©B£®[$\frac{1}{3}$£¬1£©C£®£¨0£¬$\frac{1}{3}$£©D£®£¨0£¬$\frac{1}{3}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÈýÀâÖùABC-A1B1C1ÖУ¬AC=BC£¬AB=AA1£¬¡ÏA1AB=60¡ã£¬DÊÇABµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºBC1¡ÎƽÃæA1CD£»
£¨¢ò£©ÇóÖ¤£ºAB¡ÍƽÃæA1CD£»
£¨¢ó£©ÈôAB=AC=2£¬${A_1}C=\sqrt{6}$£¬ÇóÈýÀâÖùABC-A1B1C1µÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®¸´Êýz=$\frac{3+2i}{i}$ £¨iΪÐéÊýµ¥Î»£©µÄÐ鲿Ϊ£¨¡¡¡¡£©
A£®3B£®-3C£®-3iD£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªËÄÀâ׶P-ABCDÖе×ÃæËıßÐÎABCDÊÇÕý·½ÐΣ¬¸÷²àÃ涼ÊDZ߳¤Îª2µÄÕýÈý½ÇÐΣ¬MÊÇÀâPCµÄÖе㣮½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÀûÓÿռäÏòÁ¿·½·¨½â´ðÒÔÏÂÎÊÌ⣺
£¨1£©ÇóÖ¤£ºPA¡ÎƽÃæBMD£»
£¨2£©Çó¶þÃæ½ÇM-BD-CµÄƽÃæ½ÇµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÈôÖ±Ïßax+2y+4=0ÓëÖ±Ïßx+y-2=0»¥Ïà´¹Ö±£¬ÄÇôaµÄֵΪ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÈçͼËùʾ£¬ÈýÀâÖùA1B1C1-ABCµÄ²àÀâAA1¡Íµ×ÃæABC£¬AB¡ÍAC£¬AB=AA1£¬DÊÇÀâCC1µÄÖе㣮
£¨¢ñ£©Ö¤Ã÷£ºÆ½ÃæAB1C¡ÍƽÃæA1BD£»
£¨¢ò£©ÔÚÀâA1B1ÉÏÊÇ·ñ´æÔÚÒ»µãE£¬Ê¹C1E¡ÎƽÃæA1BD£¿²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=£¨sinx+cosx£©2+2cos2x£®
£¨¢ñ£©Çóf£¨x£©×îСÕýÖÜÆÚ£»
£¨¢ò£©Çóf£¨x£©ÔÚÇø¼ä[0£¬$\frac{¦Ð}{2}$]ÉϵÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸