精英家教网 > 高中数学 > 题目详情
9.某自来水厂拟建一座平面图为矩形且面积为200m2的二级净水处理池(如图).池的深度一定,池的外围周壁建造单价为400元/m,中间的一条隔壁建造单价为100元/m,池底建造单价为60元/m2,池壁厚度忽略不计.问净水池的长为多少时,可使总造价最低?

分析 净水池的底面积一定,设长为x米,则宽可表示出来,从而得出总造价y=f(x),利用基本不等式求出最小值.

解答 解:设水池的长为x米,则宽为$\frac{200}{x}$米.
总造价:y=400(2x+$\frac{400}{x}$)+100•$\frac{200}{x}$+200×60
=800(x+$\frac{225}{x}$)+12000≥800•2$\sqrt{x•\frac{225}{x}}$+12000=36000,
当且仅当x=$\frac{225}{x}$,即x=15时,取得最小值36000.
即有净水池的长为15m时,可使总造价最低.

点评 本题考查将实际问题中的最值问题转化为数学中的函数最值,运用基本不等式求得最值是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{x^2}{4}-{y^2}=1$,过点O(0,0)作直线l与双曲线仅有一个公共点,这样的直线l共有(  )
A.0条B.2条C.4条D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知集合A={-1,0,1},集合B满足A∪B={-1,0,1},则集合B有8个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等比数列{an}中,已知a1=2,a2=4,那么a5=(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,内角A,B,C对应的边分别为a,b,c,若(a2+b2-c2)tanC=ab,则角C等于(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A(2,0)、B(0,2),从点P(1,0)射出的光线经直线AB反向后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是(  )
A.3B.2$\sqrt{2}$C.$\sqrt{10}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(理)已知△ABC中,若sinA=m,sinB=n,当m、n满足条件m、n有且只有一个为1时(只需写出满意的一个条件),cosC具有唯一确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=3sin($\frac{1}{2}$x-$\frac{π}{4}$),用五点法作出函数至少一个周期内的图象(要求列表格).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=ln(x2-4x+3)的单调减区间为(  )
A.(2,+∞)B.(3,+∞)C.(-∞,2)D.(-∞,1)

查看答案和解析>>

同步练习册答案