精英家教网 > 高中数学 > 题目详情
12.已知f($\sqrt{x}$+1)=x+1,则函数f(2)=2.

分析 直接利用函数的解析式,求解函数值即可.

解答 解:f($\sqrt{x}$+1)=x+1,则函数f(2)=f($\sqrt{1}+1$)=1+1=2.
故答案为:2.

点评 本题考查函数值的求法,注意函数的解析式的理解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.二次函数y=-$\frac{3}{4}{x}^{2}$+$\frac{9}{4}$x+3的图象与x轴分别交于A,B两点,与y轴交于点C,连接BC,AC.
(1)求线段AB的长,∠ABC的正切值;
(2)若点Q是该二次函数图象位于线段AC右上方部分的一点,且△QAC的面积为△AOC面积的$\frac{3}{4}$,求点Q
的坐标;
(3)如图2,D是线段BC上一动点,连接AD,过点D作DE⊥x轴于点E,作DF⊥AC所在直线于点F,取AD的中点P,连接PE、PF,
①试问点D在线段BC上的运动过程中,∠EPF的大小是否改变?说明理由;
②连接EF,求△PEF周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题:
①sin2θ+cos2φ=1;
②同角三角函数的基本关系式中角α可以是任意角;
③六组诱导公式中的角α可以是任意角;
④诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”与α的大小无关;
⑤若sin(kπ-α)=$\frac{1}{3}$(k∈Z),则sinα=$\frac{1}{3}$.
其中正确的是(  )
A.①③B.C.②⑤D.④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x},0<x≤1}\\{x,x>1}\end{array}\right.$的减区间是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:$\root{3}{{a}^{\frac{3}{2}}•\sqrt{{a}^{-3}}}$.$\sqrt{({a}^{-5})^{-\frac{1}{2}}({a}^{-\frac{1}{2}})^{13}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数y=f(x)=x2-2ax+a在区间[0,3]上的最小值为-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.$\frac{si{n}^{2}50}{1+sin1{0}^{°}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若f(x),g(x)为定义域为R,f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=$\frac{1}{{x}^{2}+x+1}$,则f(x)=-$\frac{x}{({x}^{2}+x+1)({x}^{2}-x+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线与椭圆4x2+y2=64有相同的焦点,它的一条渐近线为y=x,则双曲线的方程为y2-x2=24.

查看答案和解析>>

同步练习册答案