精英家教网 > 高中数学 > 题目详情

在△ABC中,角A,B,C所对的边为a,b,c,已知 a=2bsinA,
(1)求B的值;
(2)若△ABC的面积为,求a,b的值.

(1)B=30°;(2).

解析试题分析:(1)解答此类问题,主要是利用正弦定理或余弦定理,实施“边角关系”的转化.
应用正弦定理可得,,注意到三角形内角的取值范围,
得到,又,所以只有.
此处易错,出现增解.
(2)应用余弦定理及三角形面积公式,建立的方程组即得.
试题解析:(1)∵
由正弦定理可得,

.
(2)由余弦定理可得,
解得…①
…②…③
由①②③
考点:正弦定理、余弦定理的应用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设三角形ABC的内角所对的边长分别为,,且.
(Ⅰ)求角的大小;
(Ⅱ)若AC=BC,且边上的中线的长为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是的三个内角的对边,.
(1)求角的大小;
(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角对边分别是,且满足
(Ⅰ)求角的大小;
(Ⅱ)若的面积为;求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,且满足
(1)若,求的面积;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,内角所对的边长分别为.
求sinC和b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

南充市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为,经测量米,米,米,.

(Ⅰ)求的长度;
(Ⅱ)若环境标志的底座每平方米造价为5000元,不考虑其他因素,小李、小王谁的设计使建造费用最低(请说明理由)?最低造价为多少?(

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知角A,B,C是△ABC三边a,b,c所对的角,,且.
(I)若△ABC的面积S=,求b+c的值;
(II)求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量=(),=(1,),且=,其中分别为的三边所对的角.
(Ⅰ)求角的大小;
(Ⅱ)若,且,求边的长.

查看答案和解析>>

同步练习册答案