精英家教网 > 高中数学 > 题目详情
10.经过点P(3,-1)且对称轴都在坐标轴上的等轴双曲线的方程是(  )
A.$\frac{x^2}{10}-\frac{y^2}{10}$=1B.$\frac{y^2}{10}-\frac{x^2}{10}$=1C.$\frac{x^2}{8}-\frac{y^2}{8}$=1D.$\frac{y^2}{8}-\frac{x^2}{8}=1$

分析 根据题中条件:“对称轴都在坐标轴上的等轴双曲线的方程”先设出双曲线的标准方程,根据点A(3,-1),确定λ,双曲线方程可得.

解答 解:由题意知设双曲线的方程为x2-y2=λ,
又过A(3,-1),
∴λ=8,
∴x2-y2=8,
∴$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{8}$=1.
故选:C.

点评 本题主要考查了双曲线的标准方程和双曲线的简单性质,正确设方程是关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若sinα=$\frac{k+1}{k-3}$,cosα=$\frac{k-1}{k-3}$,则$\frac{1}{tanα}$的值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x,y为正实数,且x+2y=3,则$\sqrt{2x(y+\frac{1}{2})}$ 的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.cos(-2014π)的值为(  )
A.$\frac{1}{2}$B.1C.-$\frac{\sqrt{3}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)是定义在R上的偶函数,且x≥0时,f(x)=loga(x+1),(a>0,且a≠1).
(1)求函数f(x)的解析式;
(2)若-1<f(1)<1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.(实验班)已知函数f(x)=x2+(a-2)x+1在区间(0,2)和(3,4)上分别存在零点,则实数a的取值范围为-$\frac{9}{4}$<a<-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=mx(m为常数,m>0且m≠1).设$f({a_1}),f({a_2}),…,f({a_n})(n∈{N^*})$是首项为4,公比为2的等比数列.
(1)求数列{an}的通项公式;
(2)若bn=an•f(an),且数列{bn}的前n项和Sn,当$m=\sqrt{2}$时,求Sn
(3)若cn=an•f(n),问是否存在实数m,使得数列{cn}中每一项恒小于它后面的项?若存在,求出实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\frac{2x+1}{x-1}$,其定义域是[-8,-4),则下列说法正确的是(  )
A.f(x)有最大值$\frac{5}{3}$,无最小值B.f(x)有最大值$\frac{5}{3}$,最小值$\frac{7}{5}$
C.f(x)有最大值$\frac{7}{5}$,无最小值D.f(x)有最大值2,最小值$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线l与椭圆$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}=1$相交于A、B两点,且线段AB的中点为M(1,1),则直线l的方程为x+3y-4=0.

查看答案和解析>>

同步练习册答案