精英家教网 > 高中数学 > 题目详情
某学生社团在对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天背和晚上睡前背。为了研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排类型进行分层抽样,并完成一项实验.实验方法是,使两组学生记忆40个无意义音节(如XIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆检测。不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验.
两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点而不含右端点).

(1)估计这1000名被调查学生中停止后8小时40个音节的保持率不小于60%的人数;
(2)从乙组准确回忆单词个数在个范围内的学生中随机选2人,求能准确回忆个单词至少有一人的概率.
(Ⅰ)180人;(Ⅱ).

试题分析:首先弄清题意,1000名学生分为了两类,每类学生有多少人?先求出抽取的样本中的个体数,然后再根据图形求甲组中的个体数,从而可得乙组中的个体数。从乙组的频率分布直方图可得各段的频率,然后可得各段的人数。弄清以上数据,便可解决该题。
试题解析:总共抽取了人,由甲组的条形图可知甲组有有:4+10+8+4+2+1+1=30人;故乙组有20人
乙组的频率为:即有1+1+2+2+6+5+3=20人。
因为按5%的比例对这1000名学生按时间安排类型进行分层抽样
所以“白天背”的同学共有人,“晚上睡前背”的同学有400人。
(Ⅰ)40个音节的保持率不小于60%,则至少能准确回忆24个,
“白天背”的同学共有人,“晚上睡前背”的同学有人。
所以这1000名被调查学生中停止后8小时40个音节的保持率不小于60%的人数大约为180人
(Ⅱ)乙组准确回忆单词个数在个范围内的学生有6人,能准确回忆个单词的学生有2人。
从6人中随机抽取2人,用列举法可得有15种可能结果
法一、两人都能准确回忆个单词的可能结果有6种,故所求概率为:
法二、至少有一人能准确回忆个单词的可能结果有种,故所求概率为:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某学校制定学校发展规划时,对现有教师进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如表:
学历
35岁以下
35至50岁
50岁以上
本科
80
30
20
研究生
x
20
y
(1)用分层抽样的方法在35至50岁年龄段的教师中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有l人的学历为研究生的概率;
(2)在该校教师中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取l人,此人的年龄为50岁以上的概率为,求x、y的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

从某年级学生中,随机抽取50人,其体重(单位:千克)的频数分布表如下:
分组(体重)
 



频数(人)
 
 
 
 
 
(1)根据频数分布表计算体重在的频率;
(2)用分层抽样的方法从这50人中抽取10人,其中体重在中共有几人?
(3)在(2)中抽出的体重在的人中,任取2人,求体重在中各有1人的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了调查某大学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:
表1:男生上网时间与频数分布表
上网时间(分钟)





人数
5
25
30
25
15
表2:女生上网时间与频数分布表
上网时间(分钟)





人数
10
20
40
20
10
(Ⅰ)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;
(Ⅱ)完成表3的列联表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?
(Ⅲ)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.
表3 :
 
上网时间少于60分钟
上网时间不少于60分钟
合计
男生
 
 
 
女生
 
 
 
合计
 
 
 
附:,其中

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是1,2,,3,5这五个数据的中位数,且1,4,这四个数据的平均数是1,则的最小值是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下表提供了某厂节能降耗技术改造后在生产产品过程中记录的产品(吨)与相应的生产能耗(吨)的几组对应数据,根据表中提供的数据,求出关于的线性回归方程为,那么的值为(   )

3
4
5
6

2.5
3
4
4.5
A.4.5      B.3.5       C.3.15          D. 0.35

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出两种鱼各只,给每只鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机的捕出只鱼,记录下其中有记号的鱼的数目,立即放回池塘中。这样的记录做了次,并将记录获取的数据做成以下的茎叶图。

(Ⅰ)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;

(Ⅱ)为了估计池塘中鱼的总重量,现从中按照(Ⅰ)的比例对条鱼进行称重,据称重鱼的重量介于(单位:千克)之间,将测量结果按如下方式分成九组:第一组、第二组;……,第九组。右图是按上述分组方法得到的频率分布直方图的一部分。
①估计池塘中鱼的重量在千克以上(含千克)的条数;
②若第二组、第三组、第四组鱼的条数依次成公差为的等差数列,请将频率分布直方图补充完整;
③在②的条件下估计池塘中鱼的重量的众数、中位数及估计池塘中鱼的总重量;
(Ⅲ)假设随机地从池塘逐只有放回的捕出只鱼中出现鲤鱼的次数为,求的数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表:已知从全部210人中随机抽取1人为优秀的概率为
 
优秀
非优秀
总计
甲班
20
 
 
乙班
 
60
 
合计
 
 
210
 
(Ⅰ)请完成上面的列联表,并判断若按99%的可靠性要求,能否认为“成绩与班级有关”;
(Ⅱ)从全部210人中有放回抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为,若每次抽取的结果是相互独立的,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一次射击训练,某小组的成绩只有7环、8环、9环三种情况,且该小组的平均成绩为8.15环,设该小组成绩为7环的有x人,成绩为8环、9环的人数情况见下表:
环数(环)
8
9
人数(人)
7
8
那么x=________.

查看答案和解析>>

同步练习册答案