(本小题满分12分)已知A、B、C三个箱子中各装有2个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从A、B、C三个箱子中各摸出1个球.
(Ⅰ)若用数组中的分别表示从A、B、C三个箱子中摸出的球的号码,请写出数组的所有情形,并回答一共有多少种;
(Ⅱ)如果请您猜测摸出的这三个球的号码之和,猜中有奖.那么猜什么数获奖的可能性最大?请说明理由。
(1)8;(2)猜4或5获奖的可能性最大.
【解析】第一问中,先分析所有的情况为共有8种,
第二问,由于事件包含1个基本事件,事件包含3个基本事件,事件包含3个基本事件,事件包含1个基本事件,然后利用古典概型的概率计算公式得到,比较大小即可。
解:(Ⅰ)数组的所有情形为:(1,1,1),(1,1,2),(1,2,1),
(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2),共8种.
答:一共有8种. ………………………5分
注:列出5、6、7种情形,得2分;列出所有情形,得4分;写出所有情形共8种,得1分.
(Ⅱ)记“所摸出的三个球号码之和为”为事件(=3,4,5,6), ………6分
易知,事件包含1个基本事件,事件包含3个基本事件,事件包含3个基本事件,事件包含1个基本事件,所以,
,,,. ……………………10分
故所摸出的两球号码之和为4、为5的概率相等且最大.
答:猜4或5获奖的可能性最大. ……………………12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com