精英家教网 > 高中数学 > 题目详情

【题目】对于函数f(x)=x3cos3(x+ ),下列说法正确的是(
A.f(x)是奇函数且在(﹣ )上递增
B.f(x)是奇函数且在(﹣ )上递减
C.f(x)是偶函数且在(0, )上递增
D.f(x)是偶函数且在(0, )上递减

【答案】D
【解析】解:函数f(x)=x3cos3(x+ )=x3cos(3x+ )=﹣x3sin3x,
由于f(﹣x)=﹣x3sin3x=f(x),可知此函数是偶函数,又y=x3与y=sin3x在( )上递增,可得f(x)=﹣x3sin3x在( )上递减,对照四个选项,D正确,
故选:D.
【考点精析】关于本题考查的奇偶性与单调性的综合,需要了解奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售岀8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.

(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出yx之间的函数表达式;(不要求写自变量的取值范围)

(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?

(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: + =1(a>b>0)的两个焦点为F1、F2 , 且椭圆E过点(0, ),( ,﹣ ),点A是椭圆上位于第一象限的一点,且△AF1F2的面积S =
(1)求点A的坐标;
(2)过点B(3,0)的直线l与椭圆E相交于点P、Q,直线AP、AQ分别与x轴相交于点M、N,点C( ,0),证明:|CM||CN|为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,设倾斜角为α的直线L: (T为参数)与曲线C: (φ为参数)相交于不同的两点A,B.
(1)若α= ,若以坐标原点为极点,x轴的正半轴为极轴,求直线AB的极坐标方程;
(2)若直线的斜率为 ,点P(2, ),求|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=

(1)写出该函数的单调区间;

(2)若函数=-m恰有3个不同零点,求实数m的取值范围;

(3)若n2-2bn+1对所有x∈[-1,1],b∈[-1,1]恒成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:

组 别

频数

频率

[145.5,149.5)

1

0.02

[149.5,153.5)

4

0.08

[153.5,157.5)

20

0.40

[157.5,161.5)

15

0.30

[161.5,165.5)

8

0.16

[165.5,169.5)

m

n

合 计

M

N

(1)求出表中所表示的数;

(2)画出频率分布直方图;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱垂直于底面, 分别为 的中点.

1求证:平面平面

2求证:在棱上存在一点,使得平面平面

3求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=是定义在R上的奇函数,且f(1)=1.

(1)求a,b的值;

(2)判断并用定义证明f(x)在(+∞)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:如图,梯形ABCD中,AD∥BC,∠C= ,以AB为直径的⊙O恰与CD相切于点E,⊙O交BC于F,连结EF.

(1)求证:AD+BC=AB;
(2)求证:EF是AD与AB的等比中项.

查看答案和解析>>

同步练习册答案