精英家教网 > 高中数学 > 题目详情

【题目】(1)抛掷一颗骰子两次,定义随机变量

试写出随机变量的分布列(用表格格式);

(2)抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,求第二次掷得向上一面点数也是偶数的概率.

【答案】(1)(2)

【解析】试题分析:(1)抛掷一颗骰子两次,共有种不同结果,当第一次向上的面的点数等于第二次向上的面点数时种情况所以由对立事件概率公式得即可写出随机变量的分布列;(2)利用条件概率公式即可得出结论.

试题解析(1)当第一次向上的面的点数等于第二次向上的面点数时,有6种情况,所以

,由互斥事件概率公式得, )

所以所求分布列是

(2)设第一次掷得向上一面点数是偶数的事件为A,第二次掷得向上一面点数是偶数的事件为B,在第一次掷得向上一面点数是偶数的条件下,第二次掷得向上一面点数也是偶数的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】节能减排以来,兰州市100户居民的月平均用电量单位:度,以分组的频率分布直方图如图.

求直方图中x的值;求月平均用电量的众数和中位数;

估计用电量落在中的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,且函数g(x)=loga(x2+x+2)(a>0,且a≠1)在[﹣ ,1]上的最大值为2,若对任意x1∈[﹣1,2],存在x2∈[0,3],使得f(x1)≥g(x2),则实数m的取值范围是(
A.(﹣∞,﹣ ]
B.(﹣∞, ]
C.[ ,+∞)
D.[﹣ ,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是( )

A. 事件“甲分得1张白牌”与事件“乙分得1张红牌”

B. 事件“甲分得1张红牌”与事件“乙分得1张蓝牌”

C. 事件“甲分得1张白牌”与事件“乙分得2张白牌”

D. 事件“甲分得2张白牌”与事件“乙分得1张黑牌”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数y=的值的程序框图如图所示.

(1)指出程序框图中的错误,并写出算法;

(2)重新绘制解决该问题的程序框图,并回答下面提出的问题.

要使输出的值为正数,输入的x的值应满足什么条件?

要使输出的值为8,输入的x值应是多少?

要使输出的y值最小,输入的x值应是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究“在n次独立重复试验中,事件A恰好发生k次的概率的和”这个课题,我们可以分三步进行研究:(I)取特殊事件进行研究;(Ⅱ)观察分析上述结果得到研究结论;(Ⅲ)试证明你得到的结论。现在,请你完成:

(1)抛掷硬币4次,设分别表示正面向上次数为0次,1次,2次,3次,4次的概率,求 (用分数表示),并求;

(2)抛掷一颗骰子三次,设分别表示向上一面点数是3恰好出现0次,1次,2次,3次的概率,求 (用分数表示),并求;

(3)由(1)、(2)写出结论,并对得到的结论给予解释或给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥,侧面是边长为2的正三角形,且平面平面,底面是菱形,且 为棱上的动点,且.

(1)求证:

(2)试确定的值,使得二面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱柱ABCD-A1B1C1D1中,底面ABCD是平行四边形,侧棱AA1⊥底面ABCD,AB=1,AC=,BC=BB1=2.

(Ⅰ)求证:AC⊥平面ABB1A1

(Ⅱ)求点D到平面ABC1的距离d.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是奇函数.

1)求实数的值;

2)判断函数上的单调性,并给出证明;

3)当时,函数的值域是,求实数的值

查看答案和解析>>

同步练习册答案