精英家教网 > 高中数学 > 题目详情
15.已知集合A={y|y=x2-2x-3},集合B={y|y=-x2+2x+13},则A∩B=[-4,14].

分析 求出A与B中y的范围确定出A与B,找出两集合的交集即可.

解答 解:由A中y=x2-2x-3=x2-2x+1-4=(x-1)2-4≥-4,得到A=[-4,+∞);
由B中y=-x2+2x+13=-(x-1)2+14≤14,得到B=(-∞,14],
则A∩B=[-4,14],
故答案为:[-4,14]

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.数列{an}满足a1=1,且对于任意的n∈N*都满足an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$,则数列{anan+1}的前n项和为 (  )
A.$\frac{1}{3n+1}$B.$\frac{n}{3n+1}$C.$\frac{1}{3n-2}$D.$\frac{n}{3n-2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中,正确是(  )
A.两个向量相等,则它们的起点相同,终点也相同
B.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$
C.四边形ABCD中,一定有$\overrightarrow{AB}$=$\overrightarrow{DC}$
D.若$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,则$\overrightarrow{m}$=$\overrightarrow{p}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,数轴x,y的交点为O,夹角为θ,与x轴、y轴正向同向的单位向量分别是$\overrightarrow{e_1},\overrightarrow{e_2}$.由平面向量基本定理,对于平面内的任一向量$\overrightarrow{OP}$,存在唯一的有序实数对(x,y),使得$\overrightarrow{OP}=x\overrightarrow{e_1}+y\overrightarrow{e_2}$,我们把(x,y)叫做点P在斜坐标系xOy中的坐标(以下各点的坐标都指在斜坐标系xOy中的坐标).
(1)若θ=90°,$\overrightarrow{OP}$为单位向量,且$\overrightarrow{OP}$与$\overrightarrow{e_1}$的夹角为120°,求点P的坐标;
(2)若θ=45°,点P的坐标为$({1,\sqrt{2}})$,求向量$\overrightarrow{OP}$与$\overrightarrow{e_1}$的夹角;
(3)若θ=60°,求过点A(2,1)的直线l的方程,使得原点O到直线l的距离最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是首项为2,公差为-2的等差数列,
(1)求通项an
(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合$A=\left\{{x\left|{\frac{{{x^2}-x-6}}{x+1}≤0}\right.}\right\}$,集合B={x||x+2a|≤a+1,a∈R}.
(1)求集合A与集合B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在直角坐标系xOy中,设Q(x1,y1)是圆x2+y2=2上的一个动点,点P(${{x}_{1}}^{2}$-${{y}_{1}}^{2}$,x1y1)的轨迹方程为C.
(1)以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,直线l的方程为ρcos(θ+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,求曲线C与直线l交点的直角坐标;
(2)若直线l1经过点M(2,1),且与曲线C交于A,B两点,已知倾斜角为α,求点M到A,B两点的距离之积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.数列{an}中,an≠0,a1=2且2anan-1+an-1-an=0(n∈N*),则a15=$-\frac{2}{55}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\sqrt{2}sin(x+φ),0<φ<\frac{π}{2}$,且f(0)=1.
(1)求f(x)的解析式;
(2)已知$f(α-\frac{π}{4})+f(α+\frac{π}{4})=\frac{{4\sqrt{2}}}{5}$,且$\frac{3π}{2}$<α<2π,求sinα-cosα.

查看答案和解析>>

同步练习册答案