精英家教网 > 高中数学 > 题目详情

已知函数数学公式.定义函数f(x)与实数m的一种符号运算为m?f(x)=f(x)•[f(x+m)-f(x)].
(1)求使函数值f(x)大于0的x的取值范围;
(2)若数学公式,求g(x)在区间[0,4]上的最大值与最小值.

解:(1)由f(x)>0,得
即2x2-12x-3>0,解得
所以,x的取值范围为
(2)=
=
=
=
对g(x)求导,得g'(x)=6x2-21x+9=3(x-3)(2x-1)
令g'(x)=0,解得或x=3
当x变化时,g'(x)、g(x)的变化情况如下表:
x03(3,4)4
g'(x)+0-0+
g(x)3-1
所以,g(x)在区间[0,4]上的最大值为,最小值为
分析:(1)利用数轴标根法即可求解f(x)大于0的x的取值范围.
(2)利用函数f(x)与实数m的一种符号运算的定义再化简可获得g(x)=分析此函数的特征需利用导数判断其在区间[0,4]上单调性然后利用单调性求最值.
点评:本题主要考查了里利用数轴标根法解一元二次不等式和导数判断函数的单调性进而求函数的最值.第一问属常规题目较简单而第二问要判断导函数g'(x)=6x2-21x+9=3(x-3)(2x-1)在区间[0,4]上的正负进而判断函数的单调性这一步十分重要!
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年四川省成都七中高三数学专项训练:从集合到函数周期(解析版) 题型:解答题

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第09课时):第二章 函数-函数的解析式及定义域(解析版) 题型:解答题

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式.定义函数f(x)与实数m的一种符号运算为m?f(x)=f(x)•[f(x+m)-f(x)].
(1)求使函数值f(x)大于0的x的取值范围;
(2)若数学公式,求g(x)在区间[0,4]上的最大值与最小值;
(3)是否存在一个数列{an},使得其前n项和数学公式.若存在,求出其通项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广东省中山市高二(上)期末数学试卷(文科)(解析版) 题型:解答题

已知函数.定义函数f(x)与实数m的一种符号运算为m?f(x)=f(x)•[f(x+m)-f(x)].
(1)求使函数值f(x)大于0的x的取值范围;
(2)若,求g(x)在区间[0,4]上的最大值与最小值.

查看答案和解析>>

同步练习册答案