精英家教网 > 高中数学 > 题目详情

【题目】某种笼具由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为,高为,圆锥的母线长为.

1)求这种笼具的体积(结果精确到0.1);

2)现要使用一种纱网材料制作50笼具,该材料的造价为每平方米8元,共需多少元?

【答案】1;(2

【解析】

1)根据笼具的构造,可知其体积等于圆柱的体积减去圆锥的体积,即可求出;

2)求出笼具的表面积,即可求出50笼具的总造价.

设圆柱的底面半径为,高为;圆锥的母线长为,高为

根据题意可知:

1cmcm

所以笼具的体积cm

2)圆柱的侧面积cm,圆柱的底面积cm

圆锥的侧面积cm,所以笼具的表面积为 cm

故造50笼具的总造价:元.

答:这种笼具的体积约为 cm,生产50笼具的总造价为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每本单价(元)试销l天,得到如表单价(元)与销量(册)数据:

单价(元)

销量(册)

1)已知销量与单价具有线性相关关系,求关于的线性回归方程;

2)若该书每本的成本为元,要使得售卖时利润最大,请利用所求的线性相关关系确定单价应该定为多少元?(结果保留到整数)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆锥的轴截面为等腰为底面圆周上一点。

(1)若的中点为,求证: 平面

(2)如果,求此圆锥的体积;

(3)若二面角大小为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在正整数集上的函数,且满足:当成立时,总可推出 成立那么下列命题中正确的是(

A.成立,则当时均有成立

B.成立,则当时均有成立

C.成立,则当时均有成立

D.成立,则当时均有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在教材中,我们已研究出如下结论:平面内条直线最多可将平面分成个部分.现探究:空间内个平面最多可将空间分成多少个部分,.设空间内个平面最多可将空间分成个部分.

(1)求的值;

(2)用数学归纳法证明此结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为椭圆的左、右焦点,点在直线上且不在轴上,直线与椭圆的交点分别为为坐标原点.

设直线的斜率为,证明:

问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献,这5部专著中有3部产生于汉、魏、晋、南北朝时期,某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点分别为椭圆的左右顶点,直线于点是等腰直角三角形,且

(1)求的方程;

(2)设过点的动直线相交于两点,为坐标原点.当为直角时,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E,圆C

若过抛物线E的焦点F的直线l与圆C相切,求直线l方程;

的条件下,若直线l交抛物线EAB两点,x轴上是否存在点使为坐标原点?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案