精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,过F1的直线交C于A、B两点,若AB⊥AF2,且|AF2|、|AB|、|BF2|成等差数列,则C的离心率为(  )
A、
1
2
B、
2
2
C、
3
3
D、
2
3
分析:首先利用椭圆定义和|AF2|、|AB|、|BF2|成等差数列,能够得出|AB|=
4
3
a
,然后|AF1|=x,进而表示出|AF2|=2a-x,|BF1|=
4
3
a
-x,|BF2|=2a-(
4
3
a
-x)=
2
3
a
+x
;再由AB⊥AF2利用勾股定理得出|AF1|2+|AF2|2=4c2,|AF2|2+|AB|2=|BF2|2,通过整理能够得出a2=2c2,即可求出离心率.
解答:解:有定义易知|AB|=
4
3
a

设|AF1|=x
则|AF2|=2a-x|BF1|=
4
3
a
-x|BF2|=2a-(
4
3
a
-x)=
2
3
a
+x
∵AB⊥AF2
∴|AF1|2+|AF2|2=4c2
|AF2|2+|AB|2=|BF2|2
即:
(2a-x)2+x2=4c2
(2a-x)2+(
4
3
a)
2
(
2
3
a+x)
2
 ② 

由②得:x=a
代入①,有(2a-a)2+a2=4c2 即a2=2c2
∴离心率e=
c
a
=
2
2

故选B.
点评:本题考查了等差数列的性质以及椭圆的简单性质,由椭圆定义和|AF2|、|AB|、|BF2|成等差数列,能够得出|AB|=
4
3
a
是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案