精英家教网 > 高中数学 > 题目详情

【题目】已知如图, 平面,四边形为等腰梯形, .

(1)求证:平面平面

(2)已知中点,求与平面所成角的正弦值.

【答案】(1)见解析;(2)

【解析】试题分析:(1)连接,过,过,由三角形内角和定理可得,由平面,可得,从而可得平面,由面面垂直的判定定理可得结论;(2)由(1)知, ,∴为直角三角形, 中点,设到平面距离为,根据“等积变换”可求得,进而可得与平面所成角的正弦值.

试题解析:(1)连接,过,过.

在等腰梯形中,∵,∴.

,则

平面 平面

,∴平面

平面,∴平面平面.

(2)∵由(1)知, ,∴为直角三角形, 中点,设到平面距离为

,∴.

与平面所成角的正弦值等于.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在人群流量较大的街道,有一中年人吆喝送钱,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:

摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.

1)摸出的3个球为白球的概率是多少?

2)摸出的3个球为2个黄球1个白球的概率是多少?

3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学志愿者协会有名同学,成员构成如下表,其中表中部分数据不清楚,只知道从这名同学中随机抽取一位,抽到该名同学为数学专业的概率为.

性别 专业

中文

英语

数学

体育

现从这名同学中随机抽取名同学参加社会公益活动(每位同学被选到的可能性相同).

Ⅰ)求的值;

Ⅱ)求选出的名同学恰为专业互不相同的男生的概率;

Ⅲ)设为选出的名同学中女生或数学专业的学生的人数,求随机变量的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}为递增的等差数列,数列{bn}满足bnanan+1an+2nN*),设Sn为数列{bn}的前n项和,若a2,则当Sn取得最小值时n的值为(

A.14B.13C.12D.11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2-a-lnx,其中a ∈R.

(I)讨论f(x)的单调性

(II)确定a的所有可能取值,使得在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的个数是( )

(1) 已知,则 

(2)将6个相同的小球放入4个不同的盒子中,要求不出现空盒,共有10种放法.

(3) 除后的余数为

(4) 若,则

(5)抛掷两个骰子,取其中一个的点数为点的横坐标,另一个的点数为点的纵坐标,连续抛掷这两个骰子三次,点在圆内的次数的均值为

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,x轴的正半轴为极轴,建立坐标系,两个坐标系取相同的单位长度.已知直线的参数方程为,曲线的极坐标方程为

(1)求曲线的直角坐标方程

(2)设直线与曲线相交于两点,时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率是,过点的动直线于椭圆相交于两点,当直线平行于轴时,直线被椭圆截得弦长为

(Ⅰ)求的方程;

(Ⅱ)在上是否存在与点不同的定点,使得直线的倾斜角互补?若存在,求的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·绍兴仿真考试)已知数列{an}的奇数项依次构成公差为d1的等差数列,偶数项依次构成公差为d2的等差数列(其中d1d2为整数),且对任意nN*,都有an<an1,若a11a22,且数列{an}的前10项和S1075,则d1________a8________.

查看答案和解析>>

同步练习册答案