(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
(理)某种型号汽车四个轮胎半径相同,均为,同侧前后两轮胎之间的距离(指轮胎中心之间距离)为
(假定四个轮胎中心构成一个矩形). 当该型号汽车开上一段上坡路
(如图(1)所示,其中
(
)),且前轮
已在
段上时,后轮中心在
位置;若前轮中心到达
处时,后轮中心在
处(假定该汽车能顺利驶上该上坡路). 设前轮中心在
和
处时与地面的接触点分别为
和
,且
,
. (其它因素忽略不计)
(1)如图(2)所示,和
的延长线交于点
,
求证:(cm);
(2)当=
时,后轮中心从
处移动到
处实际移动了多少厘米? (精确到1cm)
(1)由OE//BC,OH//AB,得∠EOH=,
过点B作BM⊥OE,BN⊥OH,则RtOMB
Rt
ONB,从而∠BOM=
.
在RtOMB中,由BM=40得OM=40cot
,从而,OE=OM+ME=OM+BS=
.
(2)98cm。
解析试题分析:(1) 由OE//BC,OH//AB,得∠EOH=, 2分
过点B作BM⊥OE,BN⊥OH,则
RtOMB
Rt
ONB,从而
∠BOM=. 4分
在RtOMB中,由BM=40得OM=40cot
,从而,OE=OM+ME=OM+BS=
. 6分
(2)由(1)结论得OE=.
设OH=x,OF=y,
在OHG中,由余弦定理得,
2802=x2+(+100)2-2x(
+100)cos1500 ,
解得x118.8cm. 9分
在OEF中,由余弦定理得,
2802=y2+()2-2y(
)cos1500 ,
解得y216.5cm. 12分
所以,FH=y-x98cm,
即后轮中心从F处移动到H处实际移动了约98cm. 14分
考点:正弦定理;余弦定理;解三角形的实际应用。
点评:在解应用题时,我们要分析题意,分清已知与所求,再根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题。解题中,要注意正、余弦定理的灵活应用。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)设锐角△ABC的三内角A,B,C的对边分别为 A,b,c,已知向量,
,且
∥
.
(1) 求角A的大小;
(2) 若,
,且△ABC的面积小于
,求角B的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知函数f(x)=" cos(" 2x+)+sin2x.
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,满足
2·
=
, 求△ABC的面积S.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com